------------------------------------------------------------------------
-- The Agda standard library
--
-- The basic code for equational reasoning with two relations:
-- equality and some other ordering.
------------------------------------------------------------------------
--
-- See `Data.Nat.Properties` or `Relation.Binary.Reasoning.PartialOrder`
-- for examples of how to instantiate this module.

{-# OPTIONS --without-K --safe #-}

open import Relation.Binary

module Relation.Binary.Reasoning.Base.Double {a ℓ₁ ℓ₂} {A : Set a}
  {_≈_ : Rel A ℓ₁} {_∼_ : Rel A ℓ₂} (isPreorder : IsPreorder _≈_ _∼_)
  where

open import Data.Product using (proj₁; proj₂)
open import Level using (Level; _⊔_; Lift; lift)
open import Function using (case_of_; id)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym)
open import Relation.Nullary using (Dec; yes; no)
open import Relation.Nullary.Decidable using (True; toWitness)

open IsPreorder isPreorder

------------------------------------------------------------------------
-- A datatype to hide the current relation type

infix 4 _IsRelatedTo_

data _IsRelatedTo_ (x y : A) : Set (a  ℓ₁  ℓ₂) where
  nonstrict : (x∼y : x  y)  x IsRelatedTo y
  equals    : (x≈y : x  y)  x IsRelatedTo y

levelOf :  {x y}  x IsRelatedTo y  Level
levelOf (nonstrict x∼y) = ℓ₂
levelOf (equals    x≈y) = ℓ₁

relOf :  {x y} (r : x IsRelatedTo y)  Rel A (levelOf r)
relOf (nonstrict x∼y) = _∼_
relOf (equals    x≈y) = _≈_

------------------------------------------------------------------------
-- A record that is used to ensure that the final relation proved by the
-- chain of reasoning can be converted into the required relation.

data IsEquality {x y} : x IsRelatedTo y  Set (a  ℓ₁  ℓ₂) where
  isEquality :  x≈y  IsEquality (equals x≈y)

IsEquality? :  {x y} (x≲y : x IsRelatedTo y)  Dec (IsEquality x≲y)
IsEquality? (nonstrict _) = no λ()
IsEquality? (equals x≈y)  = yes (isEquality x≈y)

extractEquality :  {x y} {x≲y : x IsRelatedTo y}  IsEquality x≲y  x  y
extractEquality (isEquality x≈y) = x≈y

------------------------------------------------------------------------
-- Reasoning combinators

infix  1 begin_ begin-equality_
infixr 2 _∼⟨_⟩_ _≈⟨_⟩_ _≈˘⟨_⟩_ _≡⟨_⟩_ _≡˘⟨_⟩_ _≡⟨⟩_
infix  3 _∎

begin_ :  {x y} (r : x IsRelatedTo y)  x  y
begin (nonstrict x∼y) = x∼y
begin (equals    x≈y) = reflexive x≈y

begin-equality_ :  {x y} (r : x IsRelatedTo y)  {s : True (IsEquality? r)}  x  y
begin-equality_ r {s} = extractEquality (toWitness s)

_∼⟨_⟩_ :  (x : A) {y z}  x  y  y IsRelatedTo z  x IsRelatedTo z
x ∼⟨ x∼y  nonstrict y∼z = nonstrict (trans x∼y y∼z)
x ∼⟨ x∼y  equals    y≈z = nonstrict (proj₁ ∼-resp-≈ y≈z x∼y)

_≈⟨_⟩_ :  (x : A) {y z}  x  y  y IsRelatedTo z  x IsRelatedTo z
x ≈⟨ x≈y  nonstrict y∼z = nonstrict (proj₂ ∼-resp-≈ (Eq.sym x≈y) y∼z)
x ≈⟨ x≈y  equals    y≈z = equals    (Eq.trans x≈y y≈z)

_≈˘⟨_⟩_ :  x {y z}  y  x  y IsRelatedTo z  x IsRelatedTo z
x ≈˘⟨ x≈y  y∼z = x ≈⟨ Eq.sym x≈y  y∼z

_≡⟨_⟩_ :  (x : A) {y z}  x  y  y IsRelatedTo z  x IsRelatedTo z
x ≡⟨ x≡y  nonstrict y∼z = nonstrict (case x≡y of λ where refl  y∼z)
x ≡⟨ x≡y  equals    y≈z = equals    (case x≡y of λ where refl  y≈z)

_≡˘⟨_⟩_ :  x {y z}  y  x  y IsRelatedTo z  x IsRelatedTo z
x ≡˘⟨ x≡y  y∼z = x ≡⟨ sym x≡y  y∼z

_≡⟨⟩_ :  (x : A) {y}  x IsRelatedTo y  x IsRelatedTo y
x ≡⟨⟩ x≲y = x≲y

_∎ :  x  x IsRelatedTo x
x  = equals Eq.refl