------------------------------------------------------------------------ -- The Agda standard library -- -- Simple combinators working solely on and with functions ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Function where open import Level open import Strict private variable a b c d e : Level A : Set a B : Set b C : Set c D : Set d E : Set e ------------------------------------------------------------------------ -- Types Fun₁ : Set a → Set a Fun₁ A = A → A Fun₂ : Set a → Set a Fun₂ A = A → A → A ------------------------------------------------------------------------ -- Some simple functions id : A → A id x = x const : A → B → A const x = λ _ → x ------------------------------------------------------------------------ -- Operations on dependent functions -- These are functions whose output has a type that depends on the -- value of the input to the function. infixr 9 _∘_ infixl 8 _ˢ_ infixl 0 _|>_ infix 0 case_return_of_ infixr -1 _$_ _$!_ infix -1 _$- -- Composition _∘_ : ∀ {A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c} → (∀ {x} (y : B x) → C y) → (g : (x : A) → B x) → ((x : A) → C (g x)) f ∘ g = λ x → f (g x) -- Flipping order of arguments flip : ∀ {A : Set a} {B : Set b} {C : A → B → Set c} → ((x : A) (y : B) → C x y) → ((y : B) (x : A) → C x y) flip f = λ y x → f x y -- Application - note that _$_ is right associative, as in Haskell. -- If you want a left associative infix application operator, use -- Category.Functor._<$>_ from Category.Monad.Identity.IdentityMonad. _$_ : ∀ {A : Set a} {B : A → Set b} → ((x : A) → B x) → ((x : A) → B x) f $ x = f x -- Strict (call-by-value) application _$!_ : ∀ {A : Set a} {B : A → Set b} → ((x : A) → B x) → ((x : A) → B x) _$!_ = flip force -- Flipped application (aka pipe-forward) _|>_ : ∀ {A : Set a} {B : A → Set b} → (a : A) → (∀ a → B a) → B a _|>_ = flip _$_ -- The S combinator - written infix as in Conor McBride's paper -- "Outrageous but Meaningful Coincidences: Dependent type-safe syntax -- and evaluation". _ˢ_ : ∀ {A : Set a} {B : A → Set b} {C : (x : A) → B x → Set c} → ((x : A) (y : B x) → C x y) → (g : (x : A) → B x) → ((x : A) → C x (g x)) f ˢ g = λ x → f x (g x) -- Case expressions (to be used with pattern-matching lambdas, see -- README.Case). case_return_of_ : ∀ {A : Set a} (x : A) (B : A → Set b) → ((x : A) → B x) → B x case x return B of f = f x -- Converting between implicit and explicit function spaces. _$- : ∀ {A : Set a}{B : A → Set b} → ((x : A) → B x) → ({x : A} → B x) f $- = f _ λ- : ∀ {A : Set a}{B : A → Set b} → ({x : A} → B x) → ((x : A) → B x) λ- f = λ x → f ------------------------------------------------------------------------ -- Non-dependent versions of dependent operations -- Any of the above operations for dependent functions will also work -- for non-dependent functions but sometimes Agda has difficulty -- inferring the non-dependency. Primed (′ = \prime) versions of the -- operations are therefore provided below that sometimes have better -- inference properties. infixr 9 _∘′_ infixl 0 _|>′_ infix 0 case_of_ infixr -1 _$′_ _$!′_ -- Composition _∘′_ : (B → C) → (A → B) → (A → C) f ∘′ g = _∘_ f g -- Application _$′_ : (A → B) → (A → B) _$′_ = _$_ -- Strict (call-by-value) application _$!′_ : (A → B) → (A → B) _$!′_ = _$!_ -- Flipped application (aka pipe-forward) _|>′_ : A → (A → B) → B _|>′_ = _|>_ -- Case expressions (to be used with pattern-matching lambdas, see -- README.Case). case_of_ : A → (A → B) → B case x of f = case x return _ of f ------------------------------------------------------------------------ -- Operations that are only defined for non-dependent functions infixr 0 _-[_]-_ infixl 1 _on_ infixl 1 _⟨_⟩_ infixl 0 _∋_ -- Binary application _⟨_⟩_ : A → (A → B → C) → B → C x ⟨ f ⟩ y = f x y -- Composition of a binary function with a unary function _on_ : (B → B → C) → (A → B) → (A → A → C) _*_ on f = λ x y → f x * f y -- Composition of three binary functions _-[_]-_ : (A → B → C) → (C → D → E) → (A → B → D) → (A → B → E) f -[ _*_ ]- g = λ x y → f x y * g x y -- In Agda you cannot annotate every subexpression with a type -- signature. This function can be used instead. _∋_ : (A : Set a) → A → A A ∋ x = x -- Conversely it is sometimes useful to be able to extract the -- type of a given expression. typeOf : {A : Set a} → A → Set a typeOf {A = A} _ = A