{-# OPTIONS --without-K --safe #-}
module Function.Equality where
import Function as Fun
open import Level
open import Relation.Binary using (Setoid)
open import Relation.Binary.Indexed.Heterogeneous
using (IndexedSetoid; _=[_]⇒_)
import Relation.Binary.Indexed.Heterogeneous.Construct.Trivial
as Trivial
record Π {f₁ f₂ t₁ t₂}
(From : Setoid f₁ f₂)
(To : IndexedSetoid (Setoid.Carrier From) t₁ t₂) :
Set (f₁ ⊔ f₂ ⊔ t₁ ⊔ t₂) where
infixl 5 _⟨$⟩_
field
_⟨$⟩_ : (x : Setoid.Carrier From) → IndexedSetoid.Carrier To x
cong : Setoid._≈_ From =[ _⟨$⟩_ ]⇒ IndexedSetoid._≈_ To
open Π public
infixr 0 _⟶_
_⟶_ : ∀ {f₁ f₂ t₁ t₂} → Setoid f₁ f₂ → Setoid t₁ t₂ → Set _
From ⟶ To = Π From (Trivial.indexedSetoid To)
id : ∀ {a₁ a₂} {A : Setoid a₁ a₂} → A ⟶ A
id = record { _⟨$⟩_ = Fun.id; cong = Fun.id }
infixr 9 _∘_
_∘_ : ∀ {a₁ a₂} {A : Setoid a₁ a₂}
{b₁ b₂} {B : Setoid b₁ b₂}
{c₁ c₂} {C : Setoid c₁ c₂} →
B ⟶ C → A ⟶ B → A ⟶ C
f ∘ g = record
{ _⟨$⟩_ = Fun._∘_ (_⟨$⟩_ f) (_⟨$⟩_ g)
; cong = Fun._∘_ (cong f) (cong g)
}
const : ∀ {a₁ a₂} {A : Setoid a₁ a₂}
{b₁ b₂} {B : Setoid b₁ b₂} →
Setoid.Carrier B → A ⟶ B
const {B = B} b = record
{ _⟨$⟩_ = Fun.const b
; cong = Fun.const (Setoid.refl B)
}
setoid : ∀ {f₁ f₂ t₁ t₂}
(From : Setoid f₁ f₂) →
IndexedSetoid (Setoid.Carrier From) t₁ t₂ →
Setoid _ _
setoid From To = record
{ Carrier = Π From To
; _≈_ = λ f g → ∀ {x y} → x ≈₁ y → f ⟨$⟩ x ≈₂ g ⟨$⟩ y
; isEquivalence = record
{ refl = λ {f} → cong f
; sym = λ f∼g x∼y → To.sym (f∼g (From.sym x∼y))
; trans = λ f∼g g∼h x∼y → To.trans (f∼g From.refl) (g∼h x∼y)
}
}
where
open module From = Setoid From using () renaming (_≈_ to _≈₁_)
open module To = IndexedSetoid To using () renaming (_≈_ to _≈₂_)
infixr 0 _⇨_
_⇨_ : ∀ {f₁ f₂ t₁ t₂} → Setoid f₁ f₂ → Setoid t₁ t₂ → Setoid _ _
From ⇨ To = setoid From (Trivial.indexedSetoid To)
≡-setoid : ∀ {f t₁ t₂} (From : Set f) → IndexedSetoid From t₁ t₂ → Setoid _ _
≡-setoid From To = record
{ Carrier = (x : From) → Carrier x
; _≈_ = λ f g → ∀ x → f x ≈ g x
; isEquivalence = record
{ refl = λ {f} x → refl
; sym = λ f∼g x → sym (f∼g x)
; trans = λ f∼g g∼h x → trans (f∼g x) (g∼h x)
}
} where open IndexedSetoid To
flip : ∀ {a₁ a₂} {A : Setoid a₁ a₂}
{b₁ b₂} {B : Setoid b₁ b₂}
{c₁ c₂} {C : Setoid c₁ c₂} →
A ⟶ B ⇨ C → B ⟶ A ⇨ C
flip {B = B} f = record
{ _⟨$⟩_ = λ b → record
{ _⟨$⟩_ = λ a → f ⟨$⟩ a ⟨$⟩ b
; cong = λ a₁≈a₂ → cong f a₁≈a₂ (Setoid.refl B) }
; cong = λ b₁≈b₂ a₁≈a₂ → cong f a₁≈a₂ b₁≈b₂
}