{-# OPTIONS --without-K --safe #-}
module Data.Unit.Properties where
open import Data.Sum
open import Data.Unit.Base
open import Level using (0ℓ)
open import Relation.Nullary
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
infix 4 _≟_
_≟_ : Decidable {A = ⊤} _≡_
_ ≟ _ = yes refl
≡-setoid : Setoid 0ℓ 0ℓ
≡-setoid = setoid ⊤
≡-decSetoid : DecSetoid 0ℓ 0ℓ
≡-decSetoid = decSetoid _≟_
≤-reflexive : _≡_ ⇒ _≤_
≤-reflexive _ = _
≤-trans : Transitive _≤_
≤-trans _ _ = _
≤-antisym : Antisymmetric _≡_ _≤_
≤-antisym _ _ = refl
≤-total : Total _≤_
≤-total _ _ = inj₁ _
infix 4 _≤?_
_≤?_ : Decidable _≤_
_ ≤? _ = yes _
≤-isPreorder : IsPreorder _≡_ _≤_
≤-isPreorder = record
{ isEquivalence = isEquivalence
; reflexive = ≤-reflexive
; trans = ≤-trans
}
≤-isPartialOrder : IsPartialOrder _≡_ _≤_
≤-isPartialOrder = record
{ isPreorder = ≤-isPreorder
; antisym = ≤-antisym
}
≤-isTotalOrder : IsTotalOrder _≡_ _≤_
≤-isTotalOrder = record
{ isPartialOrder = ≤-isPartialOrder
; total = ≤-total
}
≤-isDecTotalOrder : IsDecTotalOrder _≡_ _≤_
≤-isDecTotalOrder = record
{ isTotalOrder = ≤-isTotalOrder
; _≟_ = _≟_
; _≤?_ = _≤?_
}
≤-poset : Poset 0ℓ 0ℓ 0ℓ
≤-poset = record
{ isPartialOrder = ≤-isPartialOrder
}
≤-decTotalOrder : DecTotalOrder 0ℓ 0ℓ 0ℓ
≤-decTotalOrder = record
{ isDecTotalOrder = ≤-isDecTotalOrder
}