Propositions as Types in Agda

Andrés Sicard-Ramírez

Universidad EAFIT

Encuentro Álgebra y Lógica
Universidad Tecnológica de Pereira
9 December 2015

Propositions as Types: Introduction

Propositions as Types: Introduction

Correspondence's levels
(Wadler 2015)
P. Wadler [2015]. Propositions as Types. Communications of the ACM.

Propositions as Types: Introduction

Correspondence's levels
(Wadler 2015)
(1) Propositions as types
'For each proposition in the logic there is a corresponding type in the programming language-and vice versa.'

[^0]
Propositions as Types: Introduction

Correspondence's levels
(Wadler 2015)
(1) Propositions as types
'For each proposition in the logic there is a corresponding type in the programming language-and vice versa.'
(2) Proofs as programs
'For each proof of a given proposition, there is a program of the corresponding type-and vice versa.'

[^1]
Propositions as Types: Introduction

Correspondence's levels
(Wadler 2015)
(1) Propositions as types
'For each proposition in the logic there is a corresponding type in the programming language-and vice versa.'
(2) Proofs as programs
'For each proof of a given proposition, there is a program of the corresponding type-and vice versa.'
(3) Simplification of proofs as evaluation of programs
'For each way to simplify a proof there is a corresponding way to evaluate a program-and vice versa.'

[^2]
Agda: Introduction

Interactive proof assistants

'Proof assistants are computer systems that allow a user to do mathematics on a computer, but not so much the computing (numerical or symbolical) aspect of mathematics but the aspects of proving and defining. So a user can set up a mathematical theory, define properties and do logical reasoning with them.' (Geuvers 2009, p. 3.)

Examples
Agda, Coq and Isabelle among others.
H. Geuvers [2009]. Proof Assistants: History, Ideas and Future. Sadhana.

Agda: Introduction

Agda

- Chalmers University of Technology and University of Gothenburg (Sweden)
- Based on Martin-Löf type theory
- Direct manipulation of proofs-objects
- Back-ends to Haskell (GHC and UHC)
- Written in Haskell
- Current version:

Agda 2.4.2.4

Agda: Introduction

Agda

- Chalmers University of Technology and University of Gothenburg (Sweden)
- Based on Martin-Löf type theory
- Direct manipulation of proofs-objects
- Back-ends to Haskell (GHC and UHC)
- Written in Haskell
- Current version:

Agda 2.4.2.4

Isabelle

- University of Cambridge (England) and Technical University of Munich (German)
- Based on higher-order logic
- Tactic-based
- Extraction of programs to Haskell, OCaml, Scala and SML
- Written in SML
- Integration with ATPs and SMT solvers
- Current version: Isabelle2015

Propositions as Types: First Presentation

Constructive Interpretation of the Logical Constants

a proof of consist of (Brower- has the form the pro- Heyting-Kolmogorov
position interpretation)
$\overline{A \wedge B \quad \text { a proof of } A \text { and a }(a, b) \text {, where } a \text { is a proof of } A}$ proof of $B \quad$ and b is a proof of B
$A \vee B \quad$ a proof of A or a proof $\operatorname{inl}(a)$, where a is a proof of A, of B or $\operatorname{inr}(b)$, where b is a proof of B
has not proof
$A \supset B \quad$ a method which takes $\quad \lambda x . b(x)$, where $b(a)$ is a proof any proof of A into a of B provided a is a proof of A proof of B

Gentzen's Natural Deduction

Inference rules: Introduction and elimination

$$
\begin{gathered}
\frac{A}{A \& B} \&-I \quad \frac{A \& B}{A} \&-E_{1} \quad \frac{A \& B}{B} \&-E_{2} \\
{[A]^{x}} \\
\vdots \\
\frac{B}{A \supset B} \supset-I^{x} \frac{A \supset B \quad A}{B} \supset-E
\end{gathered}
$$

(Figure 1 of Wadler (2015))

Gentzen's Natural Deduction

Example (Proof example)

$$
\begin{gathered}
\frac{[B \& A]^{z}}{A} \&-E_{2} \frac{[B \& A]^{z}}{B} \&-E_{1} \\
\frac{A \& B}{(B \& A) \supset(A \& B)} \supset-I^{z}
\end{gathered}
$$

(Figure 1 of Wadler (2015))

Church's Simply Typed λ-Calculus

Type assignment rules: Introduction and elimination

$$
\begin{array}{ccc}
\frac{M: A}{\langle M, N\rangle: A \times B} \times-I & \frac{L: A \times B}{\pi_{1} L: A} \times-E_{1} & \frac{L: A \times B}{\pi_{2} L: B} \times-E_{2} \\
{[x: A]^{x}} \\
\vdots \\
N: B & \frac{L: A \rightarrow B}{L M: B} & M: A \\
\end{array}
$$

(Figure 5 of Wadler (2015))

Church's Simply Typed λ-Calculus

Example (Program example)

$$
\begin{aligned}
& \frac{[z: B \times A]^{z}}{\pi_{2} z: A} \times-E_{2} \quad \frac{[z: B \times A]^{z}}{\pi_{1} z: B} \times-E_{1} \\
& \left\langle\pi_{2} z, \pi_{1} z\right\rangle: A \times B \\
& \lambda z \cdot\left\langle\pi_{2} z, \pi_{1} z\right\rangle:(B \times A) \rightarrow(A \times B)
\end{aligned}-\mathrm{I}
$$

(Figure 6 of Waller (2015))

Agda demo

Propositions as Types on the Logical Constants

| (conjunction) | $A \wedge B$ | $=A \times B$ | | (product type) |
| ---: | :--- | ---: | :--- | ---: | :--- |
| (disjunction) | $A \vee B$ | $=A+B$ | | (sum type) |
| (implication) | $A \supset B$ | $=A \rightarrow B$ | | (function type) |
| (falsehood) | | $=\perp$ | | (empty type) |
| (negation) | $\neg A$ | $=A \rightarrow \perp$ | | |

Further Subjects

- Propositions as types on predicate logic (which requires dependent types on the programming language)
- Propositions as types on other (e.g. classical, modal, linear) logics
- Verification of programs using dependently typed λ-calculus

Further Reading

Propositions as types

- P. Wadler [2015]. Propositions as Types. Communications of the ACM
- M.-H. Sørensen and P. Urzyczyn [2006]. Lectures on the Curry-Howard Isomorphism.

Agda

- A. Bove and P. Dybjer [2009]. Dependent Types at Work.
- U. Norell [2009]. Dependently Typed Programming in Agda.

Thanks!

[^0]: P. Wadler [2015]. Propositions as Types. Communications of the ACM.

[^1]: P. Wadler [2015]. Propositions as Types. Communications of the ACM.

[^2]: P. Wadler [2015]. Propositions as Types. Communications of the ACM.

