Propositions as Types in Agda

Andrés Sicard-Ramírez

Universidad EAFIT

Encuentro Álgebra y Lógica Universidad Tecnológica de Pereira 9 December 2015

Correspondence's levels (Wadler 2015)

P. Wadler [2015]. Propositions as Types. Communications of the ACM.

Correspondence's levels

(Wadler 2015)

Propositions as types

'For each proposition in the logic there is a corresponding type in the programming language—and vice versa.'

P. Wadler [2015]. Propositions as Types. Communications of the ACM.

Correspondence's levels

(Wadler 2015)

Propositions as types

'For each proposition in the logic there is a corresponding type in the programming language—and vice versa.'

Proofs as programs

'For each proof of a given proposition, there is a program of the corresponding type—and vice versa.'

P. Wadler [2015]. Propositions as Types. Communications of the ACM.

Correspondence's levels

(Wadler 2015)

Propositions as types

'For each proposition in the logic there is a corresponding type in the programming language—and vice versa.'

Proofs as programs

'For each proof of a given proposition, there is a program of the corresponding type—and vice versa.'

Simplification of proofs as evaluation of programs

'For each way to simplify a proof there is a corresponding way to evaluate a program—and vice versa.'

P. Wadler [2015]. Propositions as Types. Communications of the ACM.

Agda: Introduction

Interactive proof assistants

'Proof assistants are computer systems that allow a user to do mathematics on a computer, but not so much the computing (numerical or symbolical) aspect of mathematics but the aspects of proving and defining. So a user can set up a mathematical theory, define properties and do logical reasoning with them.' (Geuvers 2009, p. 3.)

Examples

Agda, Coq and Isabelle among others.

H. Geuvers [2009]. Proof Assistants: History, Ideas and Future. Sadhana.

Agda: Introduction

Agda

- Chalmers University of Technology and University of Gothenburg (Sweden)
- Based on Martin-Löf type theory
- Direct manipulation of proofs-objects
- Back-ends to Haskell (GHC and UHC)
- Written in Haskell
- Current version: Agda 2.4.2.4

Agda: Introduction

Agda

- Chalmers University of Technology and University of Gothenburg (Sweden)
- Based on Martin-Löf type theory
- Direct manipulation of proofs-objects
- Back-ends to Haskell (GHC and UHC)
- Written in Haskell
- Current version: Agda 2.4.2.4

Isabelle

- University of Cambridge (England) and Technical University of Munich (German)
- Based on higher-order logic
- Tactic-based
- Extraction of programs to Haskell, OCaml, Scala and SML
- Written in SML
- Integration with ATPs and SMT solvers
- Current version: Isabelle2015

Propositions as Types: First Presentation

Constructive Interpretation of the Logical Constants

a proof of	consist of (Brower-	has the form
the pro-	Heyting-Kolmogorov	
position	interpretation)	
$A \wedge B$	a proof of A and a proof of B	(a,b) , where a is a proof of \overline{A} and b is a proof of B
$A \lor B$	a proof of A or a proof of B	inl(a), where a is a proof of A , or $inr(b)$, where b is a proof of B
\perp	has not proof	
$A \supset B$	a method which takes any proof of A into a proof of B	$\lambda x.b(x)$, where $b(a)$ is a proof of <i>B</i> provided <i>a</i> is a proof of <i>A</i>

Gentzen's Natural Deduction

Inference rules: Introduction and elimination

(Figure 1 of Wadler (2015))

Gentzen's Natural Deduction

Example (Proof example)

(Figure 1 of Wadler (2015))

Church's Simply Typed λ -Calculus

Type assignment rules: Introduction and elimination

(Figure 5 of Wadler (2015))

Church's Simply Typed λ -Calculus

Example (Program example)

(Figure 6 of Wadler (2015))

Agda demo

Propositions as Types on the Logical Constants

(conjunction) (disjunction) (implication) (falsehood) (negation)

- $A \wedge B = A \times B$
- $A \lor B = A + B$
- $A\supset B=A\to B$
 - $\perp = \perp$

 $\neg A = A \rightarrow \bot$

(product type)
(sum type)
(function type)
(empty type)

Further Subjects

- Propositions as types on predicate logic (which requires dependent types on the programming language)
- Propositions as types on other (e.g. classical, modal, linear) logics
- Verification of programs using dependently typed λ -calculus

Further Reading

Propositions as types

- P. Wadler [2015]. Propositions as Types. Communications of the ACM
- M.-H. Sørensen and P. Urzyczyn [2006]. Lectures on the Curry-Howard Isomorphism.

Agda

- A. Bove and P. Dybjer [2009]. Dependent Types at Work.
- U. Norell [2009]. Dependently Typed Programming in Agda.

Thanks!