
Propositions as Types in Agda

Andrés Sicard-Ramírez

Universidad EAFIT

Encuentro Álgebra y Lógica
Universidad Tecnológica de Pereira

9 December 2015

Propositions as Types: Introduction

A given logic A given program-
ming language

deep correspondence

Propositions as Types: Introduction

Correspondence’s levels
(Wadler 2015)

1 Propositions as types
‘For each proposition in the logic there is a corresponding type
in the programming language—and vice versa.’

2 Proofs as programs
‘For each proof of a given proposition, there is a program of
the corresponding type—and vice versa.’

3 Simplification of proofs as evaluation of programs
‘For each way to simplify a proof there is a corresponding way
to evaluate a program—and vice versa.’

P. Wadler [2015]. Propositions as Types. Communications of the ACM.

Propositions as Types: Introduction

Correspondence’s levels
(Wadler 2015)

1 Propositions as types
‘For each proposition in the logic there is a corresponding type
in the programming language—and vice versa.’

2 Proofs as programs
‘For each proof of a given proposition, there is a program of
the corresponding type—and vice versa.’

3 Simplification of proofs as evaluation of programs
‘For each way to simplify a proof there is a corresponding way
to evaluate a program—and vice versa.’

P. Wadler [2015]. Propositions as Types. Communications of the ACM.

Propositions as Types: Introduction

Correspondence’s levels
(Wadler 2015)

1 Propositions as types
‘For each proposition in the logic there is a corresponding type
in the programming language—and vice versa.’

2 Proofs as programs
‘For each proof of a given proposition, there is a program of
the corresponding type—and vice versa.’

3 Simplification of proofs as evaluation of programs
‘For each way to simplify a proof there is a corresponding way
to evaluate a program—and vice versa.’

P. Wadler [2015]. Propositions as Types. Communications of the ACM.

Propositions as Types: Introduction

Correspondence’s levels
(Wadler 2015)

1 Propositions as types
‘For each proposition in the logic there is a corresponding type
in the programming language—and vice versa.’

2 Proofs as programs
‘For each proof of a given proposition, there is a program of
the corresponding type—and vice versa.’

3 Simplification of proofs as evaluation of programs
‘For each way to simplify a proof there is a corresponding way
to evaluate a program—and vice versa.’

P. Wadler [2015]. Propositions as Types. Communications of the ACM.

Agda: Introduction

Interactive proof assistants
‘Proof assistants are computer systems that allow a user to do math-
ematics on a computer, but not so much the computing (numerical
or symbolical) aspect of mathematics but the aspects of proving
and defining. So a user can set up a mathematical theory, define
properties and do logical reasoning with them.’ (Geuvers 2009, p. 3.)

Examples
Agda, Coq and Isabelle among others.

H. Geuvers [2009]. Proof Assistants: History, Ideas and Future. Sadhana.

Agda: Introduction
Agda

Chalmers University of
Technology and University
of Gothenburg (Sweden)
Based on Martin-Löf type
theory
Direct manipulation of
proofs-objects
Back-ends to Haskell (GHC
and UHC)
Written in Haskell
Current version:
Agda 2.4.2.4

Isabelle
University of Cambridge
(England) and Technical
University of Munich
(German)
Based on higher-order logic
Tactic-based
Extraction of programs to
Haskell, OCaml, Scala and
SML
Written in SML
Integration with ATPs and
SMT solvers
Current version:
Isabelle2015

Agda: Introduction
Agda

Chalmers University of
Technology and University
of Gothenburg (Sweden)
Based on Martin-Löf type
theory
Direct manipulation of
proofs-objects
Back-ends to Haskell (GHC
and UHC)
Written in Haskell
Current version:
Agda 2.4.2.4

Isabelle
University of Cambridge
(England) and Technical
University of Munich
(German)
Based on higher-order logic
Tactic-based
Extraction of programs to
Haskell, OCaml, Scala and
SML
Written in SML
Integration with ATPs and
SMT solvers
Current version:
Isabelle2015

Propositions as Types: First Presentation

Intuitionistic
logic

Gentzen’s
natural

deduction

Church’s
𝜆-calculus

Church’s
simply typed
𝜆-calculus

Proposition as types
for intuitionist logic

Constructive Interpretation of the Logical Constants

a proof of
the pro-
position

consist of (Brower-
Heyting-Kolmogorov
interpretation)

has the form

𝐴 ∧ 𝐵 a proof of 𝐴 and a
proof of 𝐵

(𝑎, 𝑏), where 𝑎 is a proof of 𝐴
and 𝑏 is a proof of 𝐵

𝐴 ∨ 𝐵 a proof of 𝐴 or a proof
of 𝐵

inl(𝑎), where 𝑎 is a proof of 𝐴,
or inr(𝑏), where 𝑏 is a proof
of 𝐵

⟂ has not proof

𝐴 ⊃ 𝐵 a method which takes
any proof of 𝐴 into a
proof of 𝐵

𝜆𝑥.𝑏(𝑥), where 𝑏(𝑎) is a proof
of 𝐵 provided 𝑎 is a proof of 𝐴

Gentzen’s Natural Deduction

Inference rules: Introduction and elimination

80 COMMUNICATIONS OF THE ACM | DECEMBER 2015 | VOL. 58 | NO. 12

contributed articles

We begin with the details of natural
deduction as defined by Gentzen15; the
proof rules are shown in Figure 1. To
simplify our discussion, we consider
just two of the connectives of natural
deduction. We write A and B as place-
holders standing for arbitrary formu-
las. Conjunction is written A & B, and
implication is written A ⊃ B.

We represent proofs by trees, where
each node of the tree is an instance of a
proof rule. Each proof rule consists of
zero or more formulas written above a
line, called the “premises,” and a single
formula written below the line, called
the “conclusion.” The interpretation
of a rule is that when all the premises
hold, then the conclusion follows.

The proof rules come in pairs, with
rules to introduce and to eliminate each
connective, labeled -I and -E, respectively.
As we read the rules from top to bottom,
introduction and elimination rules do
what they say on the tin: The first “intro-
duces” a formula for the connective,
which appears in the conclusion but not
in the premises; the second “eliminates”
a formula for the connective, which
appears in a premise but not in the con-
clusion. An introduction rule describes
under what conditions we say the con-
nective holds—how to define the connec-
tive. An elimination rule describes what
we may conclude when the connective
holds—how to use the connective.

The introduction rule for conjunc-
tion, &-I, states that if formula A holds
and formula B holds, then the for-
mula A & B must hold as well. There
are two elimination rules for conjunc-
tion. The first, &-E1, states that if the
formula A & B holds, then the formula
A must hold as well. The second, &-E2,
concludes B rather than A.

The introduction rule for impli-
cation, ⊃-I, states that if from the
assumption that formula A holds we
may derive the formula B, then we may
conclude the formula A ⊃ B holds and
discharge the assumption. To indicate
that A is used as an assumption zero,
once, or many times in the proof of B,
we write A in brackets and tether it to
B via ellipses. A proof is complete only
when every assumption in it has been
discharged by a corresponding use of
⊃-I, which is indicated by writing the
same name (here x) as a superscript
on each instance of the discharged
assumption and on the discharging

technique to explain the semantics of
important features of programming
languages such as state, exceptions, and
input–output. Monads became widely
adopted in the functional language
Haskell and later migrated into other
languages, including Clojure, Scala,
F#, and C#. Benton et al.3 observed
that monads correspond to yet another
modal logic, differing from all of S1–S5.

In classical, intuitionistic, and modal
logic, any hypothesis can be used an arbi-
trary number of times—zero, once, or
many. Linear logic, introduced in 1987
by Girard,17 requires that each hypoth-
esis is used exactly once. Linear logic is
“resource conscious” in that facts may be
used up and superseded by other facts,
suiting it for reasoning about the world
where situations change. Computational
aspects of linear logic are discussed by
Abramsky1 and Wadler,38 among many
others. Most recently, Session Types, a
way of describing communication pro-
tocols introduced by Honda,21 have been
related to intuitionistic linear logic by
Caires and Pfenning,4 and to classical lin-
ear logic by Wadler.40

Propositions as Types remains a
topic of active research.

Natural Deduction
We now turn to a more formal develop-
ment, presenting a fragment of natu-
ral deduction and a fragment of typed
lambda calculus in a style that makes
clear the connection between the two.

Figure 1. Gerhard Gentzen (1935)—Natural
Deduction.

A B
&-I

A & B

A & B
&-E1

A

A & B
&-E2

B

[A]x

⋅
⋅
⋅
B

⊃-Ix

A ⊃ B

A ⊃ B A
⊃-E

B

Figure 2. A proof.

[B & A]z

&-E2
A

[B & A]z

&-E1
B
&-I

A & B
⊃-Iz

(B & A) ⊃ (A & B)

Figure 4. Simplifying a proof.

&-E2

[B & A]z

A
&-E1

[B & A]z

B
&-I

A & B
⊃-Iz

(B & A) ⊃ (A & B)

B A
&-I

B & A
⊃-E

A & B

B A
& -I

B & A
&-E2

A

B A
&-I

B & A
&-E1

B
&-I

A & B

A B
&-I

A & B

=⇒
=⇒

Figure 3. Simplifying proofs.

⋅
⋅
⋅
A

⋅
⋅
⋅
B
&-I

A & B
&-E1 =⇒

=⇒

⋅
⋅
⋅
A

A

[A]x

⋅
⋅
⋅
B

⊃-Ix

A ⊃ B

⋅
⋅
⋅

A
⊃-E

⋅
⋅
⋅
A
⋅
⋅
⋅
B

B

(Figure 1 of Wadler (2015))

Gentzen’s Natural Deduction

Example (Proof example)

80 COMMUNICATIONS OF THE ACM | DECEMBER 2015 | VOL. 58 | NO. 12

contributed articles

We begin with the details of natural
deduction as defined by Gentzen15; the
proof rules are shown in Figure 1. To
simplify our discussion, we consider
just two of the connectives of natural
deduction. We write A and B as place-
holders standing for arbitrary formu-
las. Conjunction is written A & B, and
implication is written A ⊃ B.

We represent proofs by trees, where
each node of the tree is an instance of a
proof rule. Each proof rule consists of
zero or more formulas written above a
line, called the “premises,” and a single
formula written below the line, called
the “conclusion.” The interpretation
of a rule is that when all the premises
hold, then the conclusion follows.

The proof rules come in pairs, with
rules to introduce and to eliminate each
connective, labeled -I and -E, respectively.
As we read the rules from top to bottom,
introduction and elimination rules do
what they say on the tin: The first “intro-
duces” a formula for the connective,
which appears in the conclusion but not
in the premises; the second “eliminates”
a formula for the connective, which
appears in a premise but not in the con-
clusion. An introduction rule describes
under what conditions we say the con-
nective holds—how to define the connec-
tive. An elimination rule describes what
we may conclude when the connective
holds—how to use the connective.

The introduction rule for conjunc-
tion, &-I, states that if formula A holds
and formula B holds, then the for-
mula A & B must hold as well. There
are two elimination rules for conjunc-
tion. The first, &-E1, states that if the
formula A & B holds, then the formula
A must hold as well. The second, &-E2,
concludes B rather than A.

The introduction rule for impli-
cation, ⊃-I, states that if from the
assumption that formula A holds we
may derive the formula B, then we may
conclude the formula A ⊃ B holds and
discharge the assumption. To indicate
that A is used as an assumption zero,
once, or many times in the proof of B,
we write A in brackets and tether it to
B via ellipses. A proof is complete only
when every assumption in it has been
discharged by a corresponding use of
⊃-I, which is indicated by writing the
same name (here x) as a superscript
on each instance of the discharged
assumption and on the discharging

technique to explain the semantics of
important features of programming
languages such as state, exceptions, and
input–output. Monads became widely
adopted in the functional language
Haskell and later migrated into other
languages, including Clojure, Scala,
F#, and C#. Benton et al.3 observed
that monads correspond to yet another
modal logic, differing from all of S1–S5.

In classical, intuitionistic, and modal
logic, any hypothesis can be used an arbi-
trary number of times—zero, once, or
many. Linear logic, introduced in 1987
by Girard,17 requires that each hypoth-
esis is used exactly once. Linear logic is
“resource conscious” in that facts may be
used up and superseded by other facts,
suiting it for reasoning about the world
where situations change. Computational
aspects of linear logic are discussed by
Abramsky1 and Wadler,38 among many
others. Most recently, Session Types, a
way of describing communication pro-
tocols introduced by Honda,21 have been
related to intuitionistic linear logic by
Caires and Pfenning,4 and to classical lin-
ear logic by Wadler.40

Propositions as Types remains a
topic of active research.

Natural Deduction
We now turn to a more formal develop-
ment, presenting a fragment of natu-
ral deduction and a fragment of typed
lambda calculus in a style that makes
clear the connection between the two.

Figure 1. Gerhard Gentzen (1935)—Natural
Deduction.

A B
&-I

A & B

A & B
&-E1

A

A & B
&-E2

B

[A]x

⋅
⋅
⋅
B

⊃-Ix

A ⊃ B

A ⊃ B A
⊃-E

B

Figure 2. A proof.

[B & A]z

&-E2
A

[B & A]z

&-E1
B
&-I

A & B
⊃-Iz

(B & A) ⊃ (A & B)

Figure 4. Simplifying a proof.

&-E2

[B & A]z

A
&-E1

[B & A]z

B
&-I

A & B
⊃-Iz

(B & A) ⊃ (A & B)

B A
&-I

B & A
⊃-E

A & B

B A
& -I

B & A
&-E2

A

B A
&-I

B & A
&-E1

B
&-I

A & B

A B
&-I

A & B

=⇒
=⇒

Figure 3. Simplifying proofs.

⋅
⋅
⋅
A

⋅
⋅
⋅
B
&-I

A & B
&-E1 =⇒

=⇒

⋅
⋅
⋅
A

A

[A]x

⋅
⋅
⋅
B

⊃-Ix

A ⊃ B

⋅
⋅
⋅

A
⊃-E

⋅
⋅
⋅
A
⋅
⋅
⋅
B

B

(Figure 1 of Wadler (2015))

Church’s Simply Typed 𝜆-Calculus

Type assignment rules: Introduction and elimination

DECEMBER 2015 | VOL. 58 | NO. 12 | COMMUNICATIONS OF THE ACM 81

contributed articles

rule. The elimination rule for implica-
tion, ⊃-E, states that if formula A ⊃ B
holds and if formula A holds, then we
may conclude formula B holds as well;
as mentioned earlier, this rule also
goes by the name modus ponens.

Critical readers will observe we
use similar language to describe
rules (“when-then”) and formulas
(“implies”). The same idea applies at
two levels, the meta level (rules) and
the object level (formulas), and in two
notations, using a line with premises
above and conclusion below for impli-
cation at the meta level, and the symbol
⊃ with premise to the left and conclu-
sion to the right at the object level. It is
almost as if to understand implication
one must first understand implication!
This Zeno’s paradox of logic was wryly
observed by Carroll.5 We need not let it
disturb us; everyone possesses a good
informal understanding of implica-
tion, which may act as a foundation for
its formal description.

A proof of the formula

(B & A) ⊃ (A & B).

is shown in Figure 2; that is, if B and A
hold, then A and B hold. This may seem
so obvious as to be hardly deserving
of proof! However, the formulas B ⊃ A
and A ⊃ B have meanings that differ,
and we need some formal way to con-
clude that the formulas B & A and A & B
have meanings that are the same. This
is what our proof shows, and it is reas-
suring it can be constructed from the
rules we posit.

The proof reads as follows. From
B & A we conclude A, by &-E2, and from
B & A we also conclude B, by &-E1. From
A and B we conclude A & B, by &-I. That
is, from the assumption B & A (used
twice) we conclude A & B. We discharge
the assumption and conclude (B & A) ⊃
(A & B) by ⊃-I, linking the discharged
assumptions to the discharging rule by
writing z as a superscript on each.

Some proofs are unnecessarily
roundabout. Rules for simplifying
proofs appear in Figure 3, and an exam-
ple appears in Figure 4. Let us focus on
the example first.

The top of Figure 4 shows a larger
proof built from the proof in Figure 2.
The larger proof assumes as premises
two formulas, B and A, and concludes
with the formula A & B. However, rather

Figure 5. Alonzo Church (1935)—Lambda Calculus.

M : A N : B
×-I

〈M, N〉 : A × B

L : A × B
×-E1

π1 L : A

L : A × B
×-E2

π2 L : B

[x : A]x

⋅
⋅
⋅

N : B
→-Ix

λx. N : A → B

L : A → B M : A
→-E

L M : B

Figure 8. Evaluating a program.

[z : B × A]z

×-E2
π2 z : A

[z : B × A]z

×-E1
π1 z : B

×-I
〈π2 z,π1 z〉 : A × B

λz. 〈π2 z, π1 z〉 : (B × A) → (A × B)

y : B x : A
× -I

〈y, x〉 : B × A
→

→-Iz

-E
(λz. 〈π2 z, π1 z〉) 〈y, x〉 : A × B

y : B x : A
×-I

〈y, x〉 : B × A
×-E2

π2 〈y, x〉 : A

y : B x : A
× -I

〈y, x〉 : B × A
× -E 1

π1 〈y, x〉 : B
× -I

〈π2 〈y, x〉,π1 〈y, x〉〉 : A × B

x : A y : B
×-I

〈x, y〉 : A × B

⇐
=

⇐
=

⋅
⋅
⋅

M : A

⋅
⋅
⋅

N : B
×-I

〈M, N〉 : A × B
×-E1

⋅
⋅
⋅

M : A
π1 〈M, N〉 : A

[x : A]x

⋅
⋅
⋅

N : B
→-Ix

λx. N : A → B

⋅
⋅
⋅

M : A
→-E

⋅
⋅
⋅

M : A
⋅
⋅
⋅

N[M/x] : B
(λx. N) M : B

=⇒

=⇒

Figure 7. Evaluating programs.

Figure 6. A program.

[z : B × A]z

×-E2
π2 z : A

[z : B × A]z

×-E1
π1 z : B

×-I
〈π2 z,π1 z〉 : A × B

→-Iz

λz . 〈π2 z,π1 z〉 : (B × A) → (A × B)

(Figure 5 of Wadler (2015))

Church’s Simply Typed 𝜆-Calculus

Example (Program example)

DECEMBER 2015 | VOL. 58 | NO. 12 | COMMUNICATIONS OF THE ACM 81

contributed articles

rule. The elimination rule for implica-
tion, ⊃-E, states that if formula A ⊃ B
holds and if formula A holds, then we
may conclude formula B holds as well;
as mentioned earlier, this rule also
goes by the name modus ponens.

Critical readers will observe we
use similar language to describe
rules (“when-then”) and formulas
(“implies”). The same idea applies at
two levels, the meta level (rules) and
the object level (formulas), and in two
notations, using a line with premises
above and conclusion below for impli-
cation at the meta level, and the symbol
⊃ with premise to the left and conclu-
sion to the right at the object level. It is
almost as if to understand implication
one must first understand implication!
This Zeno’s paradox of logic was wryly
observed by Carroll.5 We need not let it
disturb us; everyone possesses a good
informal understanding of implica-
tion, which may act as a foundation for
its formal description.

A proof of the formula

(B & A) ⊃ (A & B).

is shown in Figure 2; that is, if B and A
hold, then A and B hold. This may seem
so obvious as to be hardly deserving
of proof! However, the formulas B ⊃ A
and A ⊃ B have meanings that differ,
and we need some formal way to con-
clude that the formulas B & A and A & B
have meanings that are the same. This
is what our proof shows, and it is reas-
suring it can be constructed from the
rules we posit.

The proof reads as follows. From
B & A we conclude A, by &-E2, and from
B & A we also conclude B, by &-E1. From
A and B we conclude A & B, by &-I. That
is, from the assumption B & A (used
twice) we conclude A & B. We discharge
the assumption and conclude (B & A) ⊃
(A & B) by ⊃-I, linking the discharged
assumptions to the discharging rule by
writing z as a superscript on each.

Some proofs are unnecessarily
roundabout. Rules for simplifying
proofs appear in Figure 3, and an exam-
ple appears in Figure 4. Let us focus on
the example first.

The top of Figure 4 shows a larger
proof built from the proof in Figure 2.
The larger proof assumes as premises
two formulas, B and A, and concludes
with the formula A & B. However, rather

Figure 5. Alonzo Church (1935)—Lambda Calculus.

M : A N : B
×-I

〈M, N〉 : A × B

L : A × B
×-E1

π1 L : A

L : A × B
×-E2

π2 L : B

[x : A]x

⋅
⋅
⋅

N : B
→-Ix

λx. N : A → B

L : A → B M : A
→-E

L M : B

Figure 8. Evaluating a program.

[z : B × A]z

×-E2
π2 z : A

[z : B × A]z

×-E1
π1 z : B

×-I
〈π2 z, π1 z〉 : A × B

λz. 〈π2 z, π1 z〉 : (B × A) → (A × B)

y : B x : A
× -I

〈y, x〉 : B × A
→

→-Iz

-E
(λz. 〈π2 z, π1 z〉) 〈y, x〉 : A × B

y : B x : A
×-I

〈y, x〉 : B × A
×-E2

π2 〈y, x〉 : A

y : B x : A
× -I

〈y, x〉 : B × A
× -E 1

π1 〈y, x〉 : B
× -I

〈π2 〈y, x〉, π1 〈y, x〉〉 : A × B

x : A y : B
×-I

〈x, y〉 : A × B

⇐
=

⇐
=

⋅
⋅
⋅

M : A

⋅
⋅
⋅

N : B
×-I

〈M, N〉 : A × B
×-E1

⋅
⋅
⋅

M : A
π1 〈M, N〉 : A

[x : A]x

⋅
⋅
⋅

N : B
→-Ix

λx. N : A → B

⋅
⋅
⋅

M : A
→-E

⋅
⋅
⋅

M : A
⋅
⋅
⋅

N[M/x] : B
(λx. N) M : B

=⇒

=⇒

Figure 7. Evaluating programs.

Figure 6. A program.

[z : B × A]z

×-E2
π2 z : A

[z : B × A]z

×-E1
π1 z : B

×-I
〈π2 z,π1 z〉 : A × B

→-Iz

λz . 〈π2 z,π1 z〉 : (B × A) → (A × B)

(Figure 6 of Wadler (2015))

Agda demo

Propositions as Types on the Logical Constants

(conjunction) 𝐴 ∧ 𝐵 = 𝐴 × 𝐵 (product type)
(disjunction) 𝐴 ∨ 𝐵 = 𝐴 + 𝐵 (sum type)
(implication) 𝐴 ⊃ 𝐵 = 𝐴 → 𝐵 (function type)

(falsehood) ⊥ = ⊥ (empty type)
(negation) ¬𝐴 = 𝐴 → ⊥

Further Subjects
Propositions as types on predicate logic (which requires
dependent types on the programming language)
Propositions as types on other (e.g. classical, modal, linear)
logics
Verification of programs using dependently typed 𝜆-calculus

Further Reading

Propositions as types
P. Wadler [2015]. Propositions as Types. Communications of
the ACM
M.-H. Sørensen and P. Urzyczyn [2006]. Lectures on the
Curry-Howard Isomorphism.

Agda
A. Bove and P. Dybjer [2009]. Dependent Types at Work.
U. Norell [2009]. Dependently Typed Programming in Agda.

Thanks!

