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Propositions as Types: Introduction

A given logic A given program-
ming language

deep correspondence



Propositions as Types: Introduction

Correspondence’s levels
(Wadler 2015)

1 Propositions as types
‘For each proposition in the logic there is a corresponding type
in the programming language—and vice versa.’

2 Proofs as programs
‘For each proof of a given proposition, there is a program of
the corresponding type—and vice versa.’

3 Simplification of proofs as evaluation of programs
‘For each way to simplify a proof there is a corresponding way
to evaluate a program—and vice versa.’

P. Wadler [2015]. Propositions as Types. Communications of the ACM.
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Agda: Introduction

Interactive proof assistants
‘Proof assistants are computer systems that allow a user to do math-
ematics on a computer, but not so much the computing (numerical
or symbolical) aspect of mathematics but the aspects of proving
and defining. So a user can set up a mathematical theory, define
properties and do logical reasoning with them.’ (Geuvers 2009, p. 3.)

Examples
Agda, Coq and Isabelle among others.

H. Geuvers [2009]. Proof Assistants: History, Ideas and Future. Sadhana.



Agda: Introduction
Agda

Chalmers University of
Technology and University
of Gothenburg (Sweden)
Based on Martin-Löf type
theory
Direct manipulation of
proofs-objects
Back-ends to Haskell (GHC
and UHC)
Written in Haskell
Current version:
Agda 2.4.2.4

Isabelle
University of Cambridge
(England) and Technical
University of Munich
(German)
Based on higher-order logic
Tactic-based
Extraction of programs to
Haskell, OCaml, Scala and
SML
Written in SML
Integration with ATPs and
SMT solvers
Current version:
Isabelle2015
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Propositions as Types: First Presentation

Intuitionistic
logic

Gentzen’s
natural

deduction

Church’s
𝜆-calculus

Church’s
simply typed
𝜆-calculus

Proposition as types
for intuitionist logic



Constructive Interpretation of the Logical Constants

a proof of
the pro-
position

consist of (Brower-
Heyting-Kolmogorov
interpretation)

has the form

𝐴 ∧ 𝐵 a proof of 𝐴 and a
proof of 𝐵

(𝑎, 𝑏), where 𝑎 is a proof of 𝐴
and 𝑏 is a proof of 𝐵

𝐴 ∨ 𝐵 a proof of 𝐴 or a proof
of 𝐵

inl(𝑎), where 𝑎 is a proof of 𝐴,
or inr(𝑏), where 𝑏 is a proof
of 𝐵

⟂ has not proof

𝐴 ⊃ 𝐵 a method which takes
any proof of 𝐴 into a
proof of 𝐵

𝜆𝑥.𝑏(𝑥), where 𝑏(𝑎) is a proof
of 𝐵 provided 𝑎 is a proof of 𝐴



Gentzen’s Natural Deduction

Inference rules: Introduction and elimination
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We begin with the details of natural 
deduction as defined by Gentzen15; the 
proof rules are shown in Figure 1. To 
simplify our discussion, we consider 
just two of the connectives of natural 
deduction. We write A and B as place-
holders standing for arbitrary formu-
las. Conjunction is written A & B, and 
implication is written A ⊃ B.

We represent proofs by trees, where 
each node of the tree is an instance of a 
proof rule. Each proof rule consists of 
zero or more formulas written above a 
line, called the “premises,” and a single 
formula written below the line, called 
the “conclusion.” The interpretation 
of a rule is that when all the premises 
hold, then the conclusion follows.

The proof rules come in pairs, with 
rules to introduce and to eliminate each 
connective, labeled -I and -E, respectively. 
As we read the rules from top to bottom, 
introduction and elimination rules do 
what they say on the tin: The first “intro-
duces” a formula for the connective, 
which appears in the conclusion but not 
in the premises; the second “eliminates” 
a formula for the connective, which 
appears in a premise but not in the con-
clusion. An introduction rule describes 
under what conditions we say the con-
nective holds—how to define the connec-
tive. An elimination rule describes what 
we may conclude when the connective 
holds—how to use the connective.

The introduction rule for conjunc-
tion, &-I, states that if formula A holds 
and formula B holds, then the for-
mula A & B must hold as well. There 
are two elimination rules for conjunc-
tion. The first, &-E1, states that if the 
formula A & B holds, then the formula 
A must hold as well. The second, &-E2, 
concludes B rather than A.

The introduction rule for impli-
cation, ⊃-I, states that if from the 
assumption that formula A holds we 
may derive the formula B, then we may 
conclude the formula A ⊃ B holds and 
discharge the assumption. To indicate 
that A is used as an assumption zero, 
once, or many times in the proof of B, 
we write A in brackets and tether it to 
B via ellipses. A proof is complete only 
when every assumption in it has been 
discharged by a corresponding use of 
⊃-I, which is indicated by writing the 
same name (here x) as a superscript 
on each instance of the discharged 
assumption and on the discharging 

technique to explain the semantics of 
important features of programming 
languages such as state, exceptions, and 
input–output. Monads became widely 
adopted in the functional language 
Haskell and later migrated into other 
languages, including Clojure, Scala, 
F#, and C#. Benton et al.3 observed 
that monads correspond to yet another 
modal logic, differing from all of S1–S5.

In classical, intuitionistic, and modal 
logic, any hypothesis can be used an arbi-
trary number of times—zero, once, or 
many. Linear logic, introduced in 1987 
by Girard,17 requires that each hypoth-
esis is used exactly once. Linear logic is 
“resource conscious” in that facts may be 
used up and superseded by other facts, 
suiting it for reasoning about the world 
where situations change. Computational 
aspects of linear logic are discussed by 
Abramsky1 and Wadler,38 among many 
others. Most recently, Session Types, a 
way of describing communication pro-
tocols introduced by Honda,21 have been 
related to intuitionistic linear logic by 
Caires and Pfenning,4 and to classical lin-
ear logic by Wadler.40

Propositions as Types remains a 
topic of active research.

Natural Deduction
We now turn to a more formal develop-
ment, presenting a fragment of natu-
ral deduction and a fragment of typed 
lambda calculus in a style that makes 
clear the connection between the two.

Figure 1. Gerhard Gentzen (1935)—Natural 
Deduction.
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Figure 4. Simplifying a proof.
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(Figure 1 of Wadler (2015))



Gentzen’s Natural Deduction

Example (Proof example)
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Church’s Simply Typed 𝜆-Calculus

Type assignment rules: Introduction and elimination
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rule. The elimination rule for implica-
tion, ⊃-E, states that if formula A ⊃ B 
holds and if formula A holds, then we 
may conclude formula B holds as well; 
as mentioned earlier, this rule also 
goes by the name modus ponens.

Critical readers will observe we 
use similar language to describe 
rules (“when-then”) and formulas 
(“implies”). The same idea applies at 
two levels, the meta level (rules) and 
the object level (formulas), and in two 
notations, using a line with premises 
above and conclusion below for impli-
cation at the meta level, and the symbol 
⊃ with premise to the left and conclu-
sion to the right at the object level. It is 
almost as if to understand implication 
one must first understand implication! 
This Zeno’s paradox of logic was wryly 
observed by Carroll.5 We need not let it 
disturb us; everyone possesses a good 
informal understanding of implica-
tion, which may act as a foundation for 
its formal description.

A proof of the formula

(B & A) ⊃ (A & B).

is shown in Figure 2; that is, if B and A 
hold, then A and B hold. This may seem 
so obvious as to be hardly deserving 
of proof! However, the formulas B ⊃ A 
and A ⊃ B have meanings that differ, 
and we need some formal way to con-
clude that the formulas B & A and A & B 
have meanings that are the same. This 
is what our proof shows, and it is reas-
suring it can be constructed from the 
rules we posit.

The proof reads as follows. From 
B & A we conclude A, by &-E2, and from 
B & A we also conclude B, by &-E1. From 
A and B we conclude A & B, by &-I. That 
is, from the assumption B & A (used 
twice) we conclude A & B. We discharge 
the assumption and conclude (B & A) ⊃ 
(A & B) by ⊃-I, linking the discharged 
assumptions to the discharging rule by 
writing z as a superscript on each.

Some proofs are unnecessarily 
roundabout. Rules for simplifying 
proofs appear in Figure 3, and an exam-
ple appears in Figure 4. Let us focus on 
the example first.

The top of Figure 4 shows a larger 
proof built from the proof in Figure 2. 
The larger proof assumes as premises 
two formulas, B and A, and concludes 
with the formula A & B. However, rather 

Figure 5. Alonzo Church (1935)—Lambda Calculus.
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Figure 7. Evaluating programs.

Figure 6. A program.
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rule. The elimination rule for implica-
tion, ⊃-E, states that if formula A ⊃ B 
holds and if formula A holds, then we 
may conclude formula B holds as well; 
as mentioned earlier, this rule also 
goes by the name modus ponens.

Critical readers will observe we 
use similar language to describe 
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(“implies”). The same idea applies at 
two levels, the meta level (rules) and 
the object level (formulas), and in two 
notations, using a line with premises 
above and conclusion below for impli-
cation at the meta level, and the symbol 
⊃ with premise to the left and conclu-
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observed by Carroll.5 We need not let it 
disturb us; everyone possesses a good 
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hold, then A and B hold. This may seem 
so obvious as to be hardly deserving 
of proof! However, the formulas B ⊃ A 
and A ⊃ B have meanings that differ, 
and we need some formal way to con-
clude that the formulas B & A and A & B 
have meanings that are the same. This 
is what our proof shows, and it is reas-
suring it can be constructed from the 
rules we posit.

The proof reads as follows. From 
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(A & B) by ⊃-I, linking the discharged 
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writing z as a superscript on each.

Some proofs are unnecessarily 
roundabout. Rules for simplifying 
proofs appear in Figure 3, and an exam-
ple appears in Figure 4. Let us focus on 
the example first.

The top of Figure 4 shows a larger 
proof built from the proof in Figure 2. 
The larger proof assumes as premises 
two formulas, B and A, and concludes 
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Propositions as Types on the Logical Constants

(conjunction) 𝐴 ∧ 𝐵 = 𝐴 × 𝐵 (product type)
(disjunction) 𝐴 ∨ 𝐵 = 𝐴 + 𝐵 (sum type)
(implication) 𝐴 ⊃ 𝐵 = 𝐴 → 𝐵 (function type)

(falsehood) ⊥ = ⊥ (empty type)
(negation) ¬𝐴 = 𝐴 → ⊥



Further Subjects
Propositions as types on predicate logic (which requires
dependent types on the programming language)
Propositions as types on other (e.g. classical, modal, linear)
logics
Verification of programs using dependently typed 𝜆-calculus
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