
Using constructive type theory for reasoning about
general recursive algorithms

Andrés Sicard-Raḿırez

(with the co-supervision of Ana Bove and Peter Dybjer at Chalmers
University of Technology, Sweden)

Universidad EAFIT, Colombia
Universidad de la República, Uruguay

LERnet grant-holder

LERnet summer school
Piriápolis, Uruguay

25 February - 1 March 2008

Goal and problems

Goal

Our goal is to use constructive type theory for reasoning about general
recursive functional programs and to explore possible connections between
functional programming languages, proof assistants, and automatic
theorem provers.

Problems

To represent general recursive functions in constructive type theory

To define a logical framework for reasonign about general recursive
functional programs

To implement the logical framework in the proof assistant Agda

Reasoning about programs: the languages

A natural language
(the problem)

vvmmmmmmmmmmmm

((QQQQQQQQQQQQQ

A specification
language

//

((QQQQQQQQQQQQ
A programming logic //oo

��

A programming
language

oo

vvmmmmmmmmmmmmm

Constructive type theory
(an unified language)

Constructive type theory (CTT)

CTT

Dependent types

(Types that depend on elements of others types)

Curry-Howard isomorphism

a : A

proof : proposition

program : specification

Inductive definitions (data types, inductive predicates)

Notion of computation (reduction of programs to values)

Notion computational equality (conversion)

Constructive type theory (CTT)

CTT

Dependent types

(Types that depend on elements of others types)

Curry-Howard isomorphism

a : A

proof : proposition

program : specification

Inductive definitions (data types, inductive predicates)

Notion of computation (reduction of programs to values)

Notion computational equality (conversion)

⇓

wwnnnnnnnnnnnnnn

%%JJJJJJJJJJJ

Correct programs by construction
(strong specification)

(integrated logic)

Programs verification
(weak specification)

(external logic)

Constructive type theory (CTT)

Example (strong specification for the greatest common divisor)

(Agda notation)

data ∃ (A : Set) (P : A -> Set) : Set where
∃-i : (witness : A) -> P witness -> ∃ A P

-- The relation of divisibility
data _||_ (m n : Nat) : Set where
||-i : ∃ Nat (\k -> isTrue (n =N= (k * m))) -> m || n

gcd : (m n : Nat) ->
∃ r Nat (r || m ∧ r || n ∧

((r’ : Nat) -> r’ || m -> r’ || n -> r ≥ r’)
)

gcd = ...

Constructive type theory (CTT)

Example (a weak specification for the greatest common divisor)

gcd : Nat -> Nat -> Nat
gcd = ...

gcd-fst : (m n : Nat) -> gcd m n || m
gcd-fst = ...

gcd-ge : (m n r’ : Nat) -> r’ || m -> r’ || n -> gcd m n ≥ r’
gcd-ge = ...

The limitation

Constructive type theory: a total functional programming language

“. . . I could not think of dealing with . . . possibly non-terminating
programs, before I had freed myself from the interpretation of
propositions as types” (P. Martin-Löf, 1985, p. 184)

Consistency (simple minded consistency)

Decidability of type-checking

The restriction: structural recursion

Recursive programs in which the recursive calls have structurally smaller
arguments

The limitation

Example (structural recursion)

data Nat : Set where
zero : Nat
suc : Nat -> Nat

-- a primitive recursion function
+ : Nat -> Nat -> Nat
m + zero = m
m + (suc n) = suc (m + n)

-- ’iterate’ is a higher-order function that iterates a function
-- a certain number of times
iterate’ : (A : Set) -> (f : A -> A) -> Nat -> A -> A
iterate’ A f zero x = x
iterate’ A f (suc n) x = f (iterate’ A f n x)

-- Other version of ’_+_’
+’ : Nat -> Nat -> Nat
+’ = iterate’ Nat suc

The limitation

Example (non-structural recursion)

-- The greatest common divisor using repeated subtraction
gcd : Nat -> Nat -> Nat
gcd zero n = n
gcd m zero = m
gcd (suc m) (suc n) = if m > n

then gcd (suc m - suc n) suc n
else gcd suc m (suc n - suc m)

The limitation

The restriction: structural recursion

Recursive programs in which the recursive calls have structurally smaller
arguments

Consequence

There is no direct way to represent general recursive programs in
constructive type theory

Representation of general recursion in constructive type
theory: some proposals

Inductive definition of domain predicates

(A. Bove and V. Capretta, 2005)

-- a general recursive function
f : A1 -> · · · -> An -> B
f = ...

-- an inductive special-purpose accessible predicate
-- that characterizes the inputs on which the
-- function terminates
data fDom : A1 -> · · · An -> Set where ...

-- structural recursive version on ’fDom’ of ’f’
fIDP : (a1 : A1)· · ·(an : An) -> fDom a1 ... an -> B
fIDP = ...

Representation of general recursion in constructive type
theory: some proposals

Example (Representation of ’gcd’ using an inductive domain predicates)

From ’gcd’ definition we have the inductive domain predicate

n : Nat
gcdDom zero n

m : Nat
gcdDom m zero

m, n : Nat suc m > suc n gcdDom (suc m − suc n)(suc n)

gcdDom (suc m)(suc n)

m, n : Nat ¬(suc m > suc n) gcdDom (suc m)(suc n − suc m)

gcdDom (suc m)(suc n)

Representation of general recursion in constructive type
theory: some proposals

Example (Representation of ’gcd’ using an inductive domain predicates)

The implementation of the inductive predicate

data gcdDom : Nat -> Nat -> Set where
gcdDom-c1 : (m : Nat) -> gcdDom m zero
...
gcdDom-c4 : (m n : Nat) -> isFalse (suc m > suc n) ->

gcdDom (suc m) (suc n - suc m) ->
gcdDom (suc m)(suc n)

The definition of ’gcd’ using structural recursive on ’gcdDom’

gcdIDP : (m n : Nat) -> gcdDom m n -> Nat
gcdIDP a zero (gcdDom-c1 .a) = a
...
gcdIDP (suc a) (suc b) (gcdDom-c4 .a .b p1 p2) =
gcIDP (suc a) (suc b - suc a) p2

Representation of general recursion in constructive type
theory: some proposals

Representation of functions as relations

-- a general recursive function
f : A1 -> · · · -> An -> B
f = ...

-- an inductive relation that relates the ’n’ input values
-- with the result value

-- it is necessary remember that the relation ’fR’ must
-- satisfies the function’s constraints
data fR : A1 -> · · · -> An -> B -> Set where ...

Representation of general recursion in constructive type
theory: some proposals

Example (Representation of ’gcd’ as an inductive relation)

data gcdR : Nat -> Nat -> Nat -> Set where
gcdR-c1 : (m : Nat) -> gcdR m zero m
...
gcdR-c4 : (m n v : Nat) -> isFalse (suc m > suc n) ->

gcdR (suc m) (suc n - suc m) v ->
gcdR (suc m)(suc n) v

Our proposal: To use the Logical Theory of Constructions
(LTC)

LTC as an unified language for reasoning about general recursive programs

(P. Dybjer, 1985, 1986, 1990)

LTC

Constructive predicate logic with equality

Type-free functional programming language

Inductively defined predicates

Notion of computation

Notion computational equality

Our proposal: To use the Logical Theory of Constructions
(LTC)

LTC and CTT

LTC

Constructive predicate logic with equality

Type-free functional programming language

Inductively defined predicates

CTT

Dependent types

Curry-Howard isomorphism

Inductive definitions

LTC-CTT

{
Notion of computation

Notion computational equality

Our proposal: To use the Logical Theory of Constructions
(LTC)

Some LTC’s features

Not Curry-Howard isomorphism

Interpretation of types as inductive predicates

We can define general recursive functions

Proving that a function has a type amounts to proving its termination
(P. Dybjer, 1985, 1986)

LTC is at least as strong as Martin-Löf type theory (J. Smith, 1978,
1984)

The implementation: Using Agda as an logical framework

Example (Partial data types)

postulate D : Set

-- Partial booleans
postulate #true : D
postulate #false : D

-- Partial natural numbers
postulate #zero : D
postulate #suc : D -> D

The implementation: Using Agda as an logical framework

Example (Introduction rules for the terminating natural numbers ’Nat’)

Nat #zero
Nat n

Nat (#suc n)

-- The pure logical framework
postulate Nat : D -> Set
postulate zero : Nat #zero
postulate suc : (n : D) -> Nat n -> Nat (#suc n)

-- A mixed logical framework
data Nat : D -> Set where
zero : Nat #zero
suc : (n : D) -> Nat n -> Nat #suc n)

The implementation: Using Agda as an logical framework

Example (Equality for the type ’D’)

-- The pure logical framework
postulate _=D=_ : D -> D -> Set

postulate =D=-refl : (d : D) -> d =D= d
postulate =D=-subst : (P : D -> Set){e1 e2 : D} -> e1 =D= e2 ->

P e1 -> P e2

Example (if-then-else)

postulate if_then_else_ : D -> D -> D -> D
postulate ite-axT : (e1 e2 : D) ->

if #true then e1 else e2 =D= e1

postulate ite-axF : (e1 e2 : D) ->
if #false then e1 else e2 =D= e2

The implementation: Using Agda as an logical framework

Example (Representation of ’gcd’ on LTC)

postulate gcdLTC : D -> D -> D

postulate gcdLTC-ax : (m n : D) ->
gcdLTC m n =D=
if (n =#N= #zero)
then m
else (if (m =#N= #zero)

then n
else (if (m >D n)

then gcdLTC (m -D n) n
else gcdLTC m (n -D m)
)

)

gcdLTC-Nat : NatT (gcdLTC m n)
gcdLTC-Nat = ...

To-do list

Theoretical work (CTT-LTC, extensions for LTC, etc)

The implementation: Agda as an (mixed) logical framework (data
types versus postulates, equalities, equality reasoning, etc.)

LTC can be formalized as a first order theory with equality. To
implement an external automatic theorem prover from Agda.

. . .

