
Lambda Calculus and Combinatory Logic

Andrés Sicard-Raḿırez
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Lambda Calculus and Combinatory Logic

“Two systems of logic which can also serve as abstract programming languages.”
[Hindley and Seldin 2008, p. ix]

The goal was to use them in the foundation of mathematics.
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Lambda Calculus

Invented by Alonzo Church (around 1930s).

The goal was to use it in the foundation of mathematics. Intended for studying functions
and recursion.

Computability model.

Model of untyped functional programming languages.
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What is the Combinatory Logic?

Invented by Moses Schönfinkel (1920) and
Haskell Curry (1927).

Intended for clarify the role of quantified variables.

Idea: To do logic and mathematics without use bound variables.

Combinators: Operators which manipulate expressions by cancellation, duplication,
bracketing and permutation.
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Lambda Calculus



Introduction

λ-calculus is a collection of several formal systems

λ-notation

Anonymous functions
Currying

Definition (λ-terms)

v ∈ V ⇒ v ∈ λ-terms (atom)

c ∈ C ⇒ c ∈ λ-terms (atom)

M,N ∈ λ-terms ⇒ (MN) ∈ λ-terms (application)

M ∈ λ-terms, x ∈ V ⇒ (λx.M) ∈ λ-terms (abstraction)

where V/C is a set of variables/constants.
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Introduction

Conventions and syntactic sugar

Application associates to the left
MN1N2 . . . Nk means (...((MN1)N2)...Nk)

Application has higher precedence
λx.PQ means (λx.(PQ))

λx1x2 . . . xn.M means (λx1.(λx2.(. . . (λxn.M) . . . )))

M ≡ N means the syntactic identity

Example

(λxyz.xz(yz))uvw ≡ ((((λx.(λy.(λz.((xz)(yz)))))u)v)w).

Lambda Calculus 9/122



Term-Structure and Substitution

Definition (P occurs in Q)

P occurs in P

If P occurs in M or in N , then P occurs in (MN)

If P occurs in M or P ≡ x, then P occurs in (λx.M)

Definition (scope)

In λx.M , M is called the scope of λx.
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Term-Structure and Substitution

Definition (free and bound occurrence of variables)

An occurrence of a variable x in a term P is called

bound if it is in the scope of a λx in P

bound and binding, iff it is the x in λx

free otherwise

Definition (bound variable of P )

If x has at least one binding occurrence in P .

Definition (free variable of P )

If x has at least one free occurrence in P .

FV(P ): The set of free variables of P .
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Term-Structure and Substitution

Example

(λy.yx(λx.y(λy.z)x))vw. (whiteboard)

Definition (close term or combinator)

A term without free variables.
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Term-Structure and Substitution

Definition (substitution [N/x]M)

The result of substituting N for every free occurrence of x in M , and changing bound variables
to avoid clashes.

[N/x]x ≡ N

[N/x]a ≡ a for all atoms a ̸≡ x

[N/x](PQ) ≡ ([N/x]P [N/x]Q)

[N/x](λx.P ) ≡ (λx.P )

[N/x](λy.P ) ≡ (λy.P ) y ̸≡ x, x ̸∈ FV(P )

[N/x](λy.P ) ≡ λy.[N/x]P y ̸≡ x, x ∈ FV(P ), y ̸∈ FV(N)

[N/x](λy.P ) ≡ λz.[N/x][z/y]P y ̸≡ x, x ∈ FV(P ), y ∈ FV(N)

where in the last equation, z is chosen to be a variable ̸∈ FV(NP ).
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Term-Structure and Substitution

Example

[(λy.vy)/x](y(λv.xv)) ≡ y(λz.(λy.vy)z) (with z ̸≡ v, y, x).
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Term-Structure and Substitution

Definition (α-conversion or changed of bound variables)

Replace λx.M by λy.[y/x]M (y ̸∈ FV(M)).

Definition (α-congruence (P ≡α Q))

P is changed to Q by a finite (perhaps empty) series of α-conversions.
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Beta Reduction

Definition (β-contraction (P ▷1β Q))

Replace an occurrence of (λx.M)N (β-redex) in P by [N/x]M (contractum).

Example

Whiteboard.

Definition (β-reduction (P ▷β Q))

P is changed to Q by a finite (perhaps empty) series of β-contractions and α-conversions.

Example

(λx.(λy.yx)z)v ▷β zv.
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Beta Reduction

Definition (β-normal form)

A term which contains no β-redex.

β-nf: The set of all β-normal forms.

Example

Whiteboard.
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Beta Reduction

Theorem (Church-Rosser theorem for ▷β)

P ▷β M P ▷β N

∃T.M ▷β T ∧N ▷β T

P

M N

∃T

Corollary

If P has a β-normal form, it is unique modulo ≡α; that is, if P has β-normal forms M and N ,
then M ≡α N .
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Beta Equality

Definition (β-equality or β-convertibility (P =β Q))

Exist P0, . . . , Pn such that

P0 ≡ P

Pn ≡ Q

(∀i ≤ n− 1)(Pi ▷1β Pi+1 ∨ Pi+1 ▷1β Pi ∨ Pi ≡α Pi+1)

Theorem (Church-Rosser theorem for =β)

P =β Q

∃T.P ▷β T ∧Q ▷β T

Proof

Whiteboard.
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Beta Equality

Corollary

If P,Q ∈ β-nf and P =β Q, then P ≡α Q.

Corollary

The relation =β is non-trivial (not all terms are β-convertible to each other).

Proof

Whiteboard.

Lambda Calculus 20/122



Combinatory Logic



Introduction

Idea

To do logic and mathematics without use bound variables.

Combinators

Operators which manipulate expressions by cancellation, duplication, bracketing and permuta-
tion.
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Introduction

Example (informal)

The commutative law for addition

∀xy.x+ y = y + x,

can be written as
A = CA,

where Axy represents x+ y and C is a combinator with the property

C f x y = f y x.
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Introduction

Example (some combinators (informal))

B f g x = f (g x) composition operator

B′ f g x = g (f x) reversed composition operator

Ix = x identity operator

Kx y = x projection operator

S f g x = f x (g x) stronger composition operator

Wf x = f x x doubling operator
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Introduction

Definition (CL-terms)

v ∈ V ⇒ v ∈ CL-terms

c ∈ C ⇒ c ∈ CL-terms

X,Y ∈ CL-terms ⇒ (X Y ) ∈ CL-terms

where

V : Set of variables

C = {I,K, S, . . . } : Set of atomic constants

FV(X): The set of variables occurring in X.
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Introduction

Definition (atoms, basic combinators and combinator)

An atom is a variable or atomic constant. The basic combinators are I, K and S. A combinator
is a CL-term whose only atoms are basic combinators.
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Introduction

Definition (substitution [U/x]Y )

The result of substituting U for every occurrence of x in Y :

[U/x]x ≡ U

[U/x] a ≡ a for all atoms a ̸≡ x

[U/x] (V W ) ≡ ([U/x]V ) ([U/x]W )
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Weak Reduction

Definition (weak redex)

The CL-terms IX, KX Y and SX Y Z.

Definition (weak contraction (U ▷1w V ))

Replace an occurrence of a weak redex in U using:

IX by X,

KX Y by X,

SX Y Z by X Z (Y Z).
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Weak Reduction

Definition (weak reduction (U ▷w V ))

The CL-term U is changed to V by a finite (perhaps empty) series of weak contractions.

Definition (weak normal form)

A CL-term which contains no weak redex.

Combinatory Logic 29/122



Weak Reduction

Example

Let B ≡ S (KS)K. Then BX Y Z ▷w X (Y Z) (whiteboard).

Example

Let W ≡ S S (K I). Then

i) WX Y ▷w X Y Y and

ii) WWW ▷w WWW ▷w · · ·
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Weak Reduction

Example

Let B ≡ S (KS)K. Then BX Y Z ▷w X (Y Z) (whiteboard).

Example

Let W ≡ S S (K I). Then

i) WX Y ▷w X Y Y and

ii) WWW ▷w WWW ▷w · · ·
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Weak Reduction

Theorem (substitution theorem for ▷w )

X ▷w Y ⇒ [U/x]X ▷w [U/x]Y.

Theorem (Church-Rosser theorem for ▷w )

P ▷w M P ▷w N
∃T.M ▷w T ∧N ▷w T

Corollary (uniqueness of nf)

A CL-term can have at most one weak normal form.
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Abstraction

Idea

To define a term [x].M such that

([x].M)N ▷w [N/x]M.

Definition (abstraction)

For every term M and every variable x,

[x].M ≡ KM if x ̸∈ FV(M) (1)

[x].x ≡ I (2)

[x].U x ≡ U if x ̸∈ FV(U) (3)

[x].U V ≡ S ([x].U) ([x].V ) if neither (1) nor (3) applies (4)
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Abstraction

Example

[x].x y ≡ S I (K y) (whiteboard).
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Abstraction

Theorem

For every term M and every variable x, [x].M is always defined, does not contain x and
([x].M)x ▷w M .

Proof

Whiteboard.

Theorem

For every term M and every variable x,

([x].M)N ▷w [N/x]M.

Notation

[x1, x2, . . . , xn].M ≡ [x1].([x2].(. . . ([xn].M) . . . )).
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Abstraction

Example

[x, y].x y y ≡ S S (K I) ≡ W (whiteboard).

Combinatory Logic 36/122



Weak Equality

Definition (weak equality or weak convertibility (X =w Y ))

Exist X0, . . . , Xn such that

i) X0 ≡ X

ii) Xn ≡ Y

iii) (∀i ≤ n− 1)(Xi ▷1w Xi+1 ∨ Xi+1 ▷1w Xi)

Theorem (Church-Rosser theorem for =w)

X =w Y
∃T.X ▷w T ∧ Y ▷w T

Corollary

If X and Y are distinct weak normal forms, them X ̸=w Y ; in particular S ̸=w K. Hence =w is
non-trivial in the sense that not all terms are weakly equal.
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Weak Equality

About the ‘weak’ adjective

X =β Y ⇒ λx.X =β λx.Y,

but
X =w Y ̸⇒ [x].X =w [x].Y.

Example

Let X ≡ Sx y z and Y ≡ x z (y z). Then X =w Y , but [x].X ̸=w [x].Y , where

[x].X ≡ S (S S (K y)) (K z),

[x].Y ≡ S (S I (K z)) (K (y z)).
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Introduction

Notation Meaning for λ Meaning for CL

term λ-term CL-term
X ≡ Y X ≡α Y X is identical to Y
X ▷β,w Y X ▷β Y X ▷w Y
X =β,w Y X =β Y X =w Y
λx λx [x]
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The Fixed-Point Theorem

Idea

For every term X there is a term P such

X P =β,w P.

The term P is called a fixed-point of X.
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The Fixed-Point Theorem

Theorem (fixed-point theorem)

There is a combinator Y such that for every term X

1. YX =β,w X (YX).

2. YX ▷β,w X (YX).

Proof.

YTuring ≡ U U , where U ≡ λu.λx.x (uux) (whiteboard).
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The Fixed-Point Theorem

Theorem (fixed-point theorem)

There is a combinator Y such that for every term X

1. YX =β,w X (YX).

2. YX ▷β,w X (YX).

Proof.

YTuring ≡ U U , where U ≡ λu.λx.x (uux) (whiteboard).
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The Fixed-Point Theorem

Corollary

For every term Z and n ≥ 0, the equation

x y1 . . . yn = Z

can be solved for x. That is, there is a term X such that

X y1 . . . yn =β,w [X/x]Z.

Proof.

X ≡ Y (λ.x y1 . . . yn.Z) (whiteboard).
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The Fixed-Point Theorem

Corollary

For every term Z and n ≥ 0, the equation

x y1 . . . yn = Z

can be solved for x. That is, there is a term X such that

X y1 . . . yn =β,w [X/x]Z.

Proof.

X ≡ Y (λ.x y1 . . . yn.Z) (whiteboard).
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The Fixed-Point Theorem

Definition (fixed-point combinator)

A fixed-point combinator is any combinator Y such Y X =β,w X (YX), for all terms X.
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The Fixed-Point Theorem

Example

YCurry-Rosenbloom ≡ λx.V V , where V ≡ λy.x (y y) is a fixed-point combinator. (Whiteboard)
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Böhms’s Theorem

Definition (η-redex)

In λ-calculus, a λ-term of form λx.M x with x ̸∈ FV(M) is called an η-redex and is said to
η-contract to M .

Definition (βη-normal forms)

In λ-calculus, a λ-term which contains no β-redex and no η-redex.

βη-nf: The set of all βη-normal forms.

Example

The λ-term λu.λx.u x is in β-nf but not in βη-nf.
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Böhms’s Theorem

Definition (strong normal forms)

In CL, the class of strong nf is defined inductively by

All atoms other than I,K and S are in strong nf.

If X1, . . . , Xn are in strong nf, and a is any atom ̸≡ I,K,S, then aX1 . . . Xn is in strong
nf.

If X is in strong nf, then so is [x].X.
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Böhms’s Theorem

Theorem (Böhms’s theorem)

Let M and N be combinators, either in βη-normal form (in λ) or in strong normal form (in
CL). If M ̸≡ N , then there exists n ≥ 0 and combinators L1, . . . , Ln such that

M L1 . . . Ln x y ▷β,w x,

N L1 . . . Ln x y ▷β,w y.
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Böhms’s Theorem

Corollary

Let M and N be distinct combinators in βη-normal form (in λ) or in strong normal form (in
CL). If we add the equation M = N as a new axiom to the definition =β or =w, then all terms
become equal.

Proof

Whiteboard.
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Leftmost Reduction

Idea

Proving that a given term has no normal form.

Definition (contraction (X ▷R Y ) )

(X ▷R Y ): R is an redex in X and Y is the result of contracting R in X.

Example

(λx.(λy.y x) z) v ▷(λy.y x) z (λx.z x) v.
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Leftmost Reduction

Definition (reduction)

A reduction ρ is

CL : X1 ▷R1 X2 ▷R2 · · ·
λ : X1 ▷R1 Y1 ≡α X2 ▷R2 · · ·
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Leftmost Reduction

Definition

Length of a reduction: The number of its contractions.

Terminus: The last term of a reduction of length finite.

A reduction ρ has maximal length iff either ρ is infinite or its terminus contains no redexes.

A redex is maximal iff it is not contained in any other redex.

A (maximal) redex is the left most maximal redex iff it is the leftmost of the maximal redexes.

Leftmost reduction: In every contraction, the contracted redex is the leftmost maximal redex.
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Leftmost Reduction

Example

Let X ≡ S (I (Kx y)) (I z).

Redexes: I (Kx y), Kx y and I z.
Maximal redexes: I (Kx y) and I z.
Leftmost redex: I (Kx y).

Example

The leftmost reduction for X.

S (I (Kx y))(I z) ▷1w S (Kx y)(I z)

▷1w Sx (I z)

▷1w Sx z
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Leftmost Reduction

Example

Let X ≡ S (I (Kx y)) (I z).

Redexes: I (Kx y), Kx y and I z.
Maximal redexes: I (Kx y) and I z.
Leftmost redex: I (Kx y).

Example

The leftmost reduction for X.

S (I (Kx y))(I z) ▷1w S (Kx y)(I z)

▷1w Sx (I z)

▷1w Sx z

The Power of λ and Combinators 56/122



Leftmost Reduction

Theorem (leftmost reduction theorem)

If a term X has a normal form X∗, then the leftmost reduction of X is finite and ends at X∗.
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Representability

Definition

Let X,Y be λ-terms or CL-terms. Then

X0Y ≡ Y,

Xn+1Y ≡ X(XnY ).

Definition (Church numerals)

For λ: n ≡ λxy.xny,

For CL: n ≡ (SB)n(KI),where B ≡ S(KS)K.
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Representability

Definition (representability)

Let φ be a partial function φ : Nm → N. A term X represents φ iff

φ(n1, . . . , nm) = p⇒ Xn1 . . . nm =β,w p,

φ(n1, . . . , nm) does not exist ⇒ Xn1 . . . nm has no nf.
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Representability

Example

The successor function σ(n) = n+ 1 is represented by

In λ: σ ≡ λuxy.x(uxy) (whiteboard)

In CL: σ ≡ SB

Definition (conditional operator)

D ≡ λxyz.z(Ky)x

For all X,Y

DXY 0 =β,w X (whiteboard)

DXY k + 1 =β,w Y (whiteboard)

DXY n is called if n = 0 then X, else Y .
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Recursion Using Fixed-Points

Example (informal)

(From: Peyton Jones [1987])

fac ≡ λn.if n = 0 then 1 else n ∗ fac (n− 1)

fac ≡ λn.(. . . fac . . . )

fac ≡ (λfn.(. . . f . . . ))fac

h ≡ λfn.(. . . f . . . ) (not recursive!)

fac ≡ h fac (fac is a fixed-point of h!)

fac ≡ Yh
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Recursion Using Fixed-Points

Example (cont.)

fac 1 ≡ Yh 1

=β,w h(Yh) 1

≡ (λfn.(. . . f . . . ))(Yh) 1

▷β,w if 1 = 0 then 1 else 1 ∗ (Yh 0)

▷β,w 1 ∗ (Yh 0)

=β,w 1 ∗ (h(Yh) 0)
≡ 1 ∗ ((λfn.(. . . f . . . ))(Yh)0)
▷β,w 1 ∗ (if 0 = 0 then 1 else 1 ∗ (Yh (−1)))

▷β,w 1 ∗ 1
▷β,w 1
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Representing the Computable Functions

Theorem (representation of Turing-computable functions)

In λ or CL every Turing-computable function can be represented by a combinator.
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The Definitions of the Theories

Definition (λβ, formal theory of β-equality)

Formulas: M = N , where M,N ∈ λ-terms.

Axiom-schemes:

(α) λx.M = λy.[y/x]M if y ∈ FV(M),

(β) (λx.M)N = [N/x]M,

(ρ) M =M.

Rules of inference:

M =M ′
(µ)

NM = NM ′

M =M ′
(ν)

MN =M ′N

M =M ′
(ξ)

λx.M = λx.M ′

M = N N = P(τ)
M = P

M = N(σ)
N =M
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The Definitions of the Theories

Definition (λβ, formal theory of β-equality)

Deductions: λβ,A1, . . . , An ⊢ B (There is a deduction of B from the assumptions A1, . . . , An

in λβ).

Theorems: λβ ⊢ B (The formula B is probable in λβ).

The Formal Theories λβ and CLw 67/122



The Definitions of the Theories

Example

Let M and N be two closed terms

(λx.(λy.x))M = [M/x]λy.x ≡ λy.M
(ν)

(λx.(λy.x))MN = (λy.M)N (λy.M)N = [N/y]M ≡M
(τ)

(λx.(λy.x))MN =M

That is to say, λβ ⊢ (λxy.x)MN =M .

Remark

λβ is a equational theory and it is a logic-free theory (there are not logical connectives or
quantifiers in its formulae).
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The Definitions of the Theories

Definition (λβ, formal theory of β-reduction)

(Similar to the formal theory of β-equality, but:

1. Formulas: M ▷β N .

2. To change ‘=’ by ‘▷β.

3. Remove the rule (σ).)

Formulas: M ▷β N , where M,N ∈ λ-terms.

Axiom-schemes:

(α) λx.M ▷β λy.[y/x]M if y ∈ FV(M),

(β) (λx.M)N ▷β [N/x]M,

(ρ) M ▷β M.
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The Definitions of the Theories

Definition (λβ, formal theory of β-reduction)

Rules of inference:

M ▷β M
′

(µ)
NM ▷β NM

′

M ▷β M
′

(ν)
MN ▷β M

′N

M ▷β M
′

(ξ)
λx.M ▷β λx.M

′

M ▷β N N ▷β P
(τ)

M ▷β P

Theorem

M ▷β N ⇐⇒ λβ ⊢M ▷β N,

M =β N ⇐⇒ λβ ⊢M = N.
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The Definitions of the Theories

Definition (CLw, formal theory of weak equality)

Formulas: M = N , where M,N ∈ CL-terms

Axiom-schemes:

(I) IX = X,

(K) KXY = X,

(S) SXY Z = XZ(Y Z),

(ρ) X = X.

Rules of inference: The same rules than the theory λβ except the rule (ξ).

Deductions: CLw, A1, . . . , An ⊢ B.

Theorems: CLw ⊢ B.
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The Definitions of the Theories

Definition (CLw, formal theory of weak reduction)

Similar to the formal theory of β-reduction.

Theorem

M ▷w N ⇐⇒ CLw ⊢M ▷w N,

M =w N ⇐⇒ CLw ⊢M = N.
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Equivalence of Theories

T : Theory

F : Formulas of T

Rule of inference R(φ): Given by a partial function φ : Fn → F

Instance of R(φ):

A1, . . . , An

B
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Equivalence of Theories

Notation

T , T ′: Theories with the same formulas
R: Inference rule
C: Formula

Definition (derivable rules)

R is derivable in T iff for each instance of R (with premises A1, . . . , An and conclusion B)

T , A1, . . . , An ⊢ B.

Definition (admissible rules)

R is admissible in T iff adding R to T as a new rule will not increase the set of theorems of T .

Definition (derivable and admissible formula)

T ⊢ C.
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Equivalence of Theories

Theorem

If R is derivable in T , then R is admissible in T . The implication in the opposite direction does
not hold in general.

Definition (theories theorem-equivalent)

T and T ′ are theorem-equivalent iff every rule and axiom of T is admissible in T ′ and vice-versa.

Definition (theories rule-equivalent)

T and T ′ are rule-equivalent iff every rule and axiom of T is derivable in T ′ and vice-versa.
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Equivalence of Theories

Definition (equality relation determined by a theory)

T : Formal theory with some equations X = Y .

The equality relation determined by T is =T is:

X =T Y ⇐⇒ T ⊢ X = Y.
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Extensionality in Lambda Calculus



Extensional Equality

For functions: ∀x (f(x) = g(x)) ⇒ f = g.

For programs: It two programs compute the same function, are they the same program?

Theorem

The theory λβ is not extensional.

Proof.

Let F ≡ y and G ≡ λx.yx. Then for all X

λβ ⊢ FX = GX,

but
λβ ̸⊢ F = G.
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Extensional Equality

Rule and axiom-scheme to express extensionality

Mx = Nx(ζ) if x ̸∈ FV(MN),
M = N

(η) λx.Mx =M if x ̸∈ FV(M).

Definition (theories λβζ and λβη)

λβζ :λβ + (ζ),

λβη :λβ + (η).
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Extensional Equality

Theorem

The theories λβζ and λβη are rule-equivalents.

Proof.

1. (ζ) is derivable in λβη, i.e.
λβη,Mx = Nx ⊢M = N (with x ̸∈ FV(MN)). (Whiteboard).

2. (η) is derivable in λβζ, i.e.
λβζ ⊢ λx.Mx =M (with x ̸∈ FV(M)). (Whiteboard).

Definition (extensional equality in λ)

M =λext N ⇐⇒ λβζ ⊢M = N.
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Beta-Eta Reduction in Lambda Calculus

Definition (η-redex and contractum)

An η-redex is any λ-term λx.Mx with x ̸∈ FV(M). Its contractum is M .

Definition (η-contraction (P ▷1η Q))

Replace an occurrence of a η-redex in P by its contractum.

Definition (η-reduction (P ▷η Q))

P is changed to Q by a finite (perhaps empty) series of η-contractions and α-conversions.
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Beta-Eta Reduction in Lambda Calculus

Definition (βη-redex)

An βη-redex is a β-redex or an η-redex.

Definition (βη-contraction (P ▷1βη Q))

Replace an occurrence of a βη-redex in P by its contractum.

Definition (βη-reduction (P ▷βη Q))

P is changed to Q by a finite (perhaps empty) series of βη-contractions and α-conversions.
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Beta-Eta Reduction in Lambda Calculus

Definition (βη-normal forms)

A λ-term which contains no βη-redex.

Theorem (Church-Rosser theorem for ▷βη )

P ▷βη M P ▷βη N

∃T.M ▷βη T ∧N ▷β T

Theorem (relation between ▷βη and =λext)

P =λext Q iff Q can be obtained from P by a finite (perhaps empty) series of βη-contractions
and reversed βη-contractions and α-conversions.
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Beta-Eta Reduction in Lambda Calculus

Theorem (Church-Rosser theorem for =λext)

P =λext Q

∃T.P ▷βη T ∧Q ▷βη T

Corollary

The relation =λext is non-trivial (not all terms are βη-convertible to each other).
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Extensionality in Combinatory Logic



Extensional Equality

Theorem

The theory CLw is not extensional.

Proof.

Let X ≡ S(Ku)I and Y ≡ u, then for all M

CLw ⊢ XM = YM,

but
CLw ̸⊢ X = Y.
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Extensional Equality

Rule and axiom-scheme to express extensionality

Xx = Y x(ζ) if x ̸∈ FV(XY ),
X = Y

X = Y(ξ)
[x].X = [x].Y

(η) [x].Ux = U if x ̸∈ FV(U).

Definition (theories CLζ and CLξ)

CLζ : CL + (ζ),

CLξ : CL + (ξ).
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Extensional Equality

Exercise

Probe that neither (ζ) nor (ξ) are admissible in CLw (whiteboard).
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Extensional Equality

Definition (extensional equality in CL)

X =Cext Y ⇐⇒ CLζ ⊢ X = Y.

Example

SK =Cext KI. (Whiteboard).
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Extensional Equality

Theorem

The theory CLξ determines the same equality-relation =Cext as CLζ does.

Proof.

1. (ζ) is derivable in CLξ, i.e.

CLξ,Xx = Y x ⊢ X = Y (with x ̸∈ FV(XY )). (Whiteboard).

2. (ξ) is derivable in CLζ, i.e.

CLζ,X = Y ⊢ [x].X = [x].Y . (Whiteboard).
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Axioms for Extensionality in CL

Definition (formal theory CLextax)

CLextax : CLw + E-ax 1 + · · ·+ E-ax 5, where

S(S(KS)(S(KK)(S(KS)K))) = S(KK) (E-ax 1)

S(S(KS)K)(KI) = I (E-ax 2)

S(KI) = I (E-ax 3)

S(KS)(S(KK)) = K (E-ax 4)

S(K(S(KS)))(S(KS)(S(KS))) =

S(S(KS)(S(KK)(S(KS)(S(K(S(KS)))S))))(KS) (E-ax 5)

Extensionality in Combinatory Logic 91/122



Axioms for Extensionality in CL

Definition (other version of E-ax 1, . . . ,E-ax 5)

[x, y, v]. (Kxv)(Kyv) = [x, y, v].xy (E-ax 1)

[x, v]. (Kxv)(Iv) = [x, v].xv (E-ax 2)

[x, v]. I(xv) = [x, v].xv (E-ax 3)

[x, y, v].K(xv)(yv) = [x, y, v].xv (E-ax 4)

[x, y, z, v].S(xv)(yv)(zv) = [x, y, z, v].xv(zv)(yv(zv)) (E-ax 5)

Motivation

We are looking axioms which will make (ξ) admissible in CLextax:

CLextax ⊢ X = Y =⇒ CLextax ⊢ [x].X = [x].Y.
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Axioms for Extensionality in CL

Theorem

The theory CLextax is theorem-equivalent to CLξ.
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Strong Reduction

Definition (strong reduction � )

The formal theory of strong reduction:

Formulas: X � Y , where X,Y ∈ CL-terms

Axiom-schemes and rules: The same than CLw changed ‘=’ by ‘� ’ and the rule (σ) omitted.

New rule added:

X � Y(ξ)
[x].X � [x].Y

Example

SK � KI. (Whiteboard).
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Strong Reduction

Theorem (Church-Rosser theorem for � )

U � X U � Y
∃Z.X � Z ∧ Z � Y

Definition (strong irreducibility)

X is called strongly irreducible iff, for all Y

X � Y =⇒ Y ≡ X.

Theorem

The strongly irreducible CL-terms are exactly the terms in the strong nf class.
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Models of CL



Applicative Structures

Definition (valuation)

Let D a set. A valuation is a mapping ρ : Vars → D.

Notation: [d/x]ρ =

{
ρ(y), if y ̸= x;

d, otherwise.

Definition (applicative structure)

An applicative structure is a structure ⟨D, ·⟩ where
1. |D| ≥ 2.

2. · : D2 → D.
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Combinatory Algebras

Definition (combinatory algebra)

A combinatory algebra is a structure (convention: association to the left for ·) D = ⟨D, ·⟩ where

1. |D| ≥ 2.

2. · : D2 → D.

3. There are two elements k, s ∈ D such that for all a, b, c ∈ D,

k · a · b = a, (5)

s · a · b · c = a · c · (b · c). (6)
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Combinatory Algebras

Definition (model of CLw)

A model of CLw is a structure ⟨D, ·, i, k, s⟩ where
1. ⟨D, ·⟩ is a combinatory algebra.

2. The elements k and s satisfy (5) and (6).

3. The element i satisfies i = s · k · k.

Definition (model of CLextax)

A model of CLextax is a model ⟨D, ·, i, k, s⟩ of CLw that satisfies the extensionality axioms
E-ax 1, . . . ,E-ax 5.
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Combinatory Algebras

Definition (interpretation of a term)

Let D = ⟨D, ·, i, k, s⟩ where ⟨D, ·⟩ is a combinatory algebra and ρ a valuation. The interpretation
of X in D under ρ, denoted JXKDρ , is defined by

JXKDρ : CL-term → D

JxKDρ = ρ(x),

JIKDρ = i,

JKKDρ = k,

JSKDρ = s,

JXY KDρ = JXKDρ · JY KDρ .
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Combinatory Algebras

Definition (satisfaction)

D, ρ |= X = Y ⇐⇒ JXKDρ = JY KDρ ,

D |= X = Y ⇐⇒ (∀ρ)(D, ρ |= X = Y ).

Models of CL 101/122



Combinatory Algebras

Example (term model)

Let T ∈ {CLw,CLextax}. For each CL-term X,

[X] = {Y : T ⊢ X = Y }.

The TM(T ) (the term model of T ) is ⟨D, ·, i, k, s⟩ where

D = {[X] : X is a CL-term},
[X] · [Y ] = [XY ],

i = [I],

k = [K],

s = [S].
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Combinatory Algebras

Example (cont.)

In this model, interpretation is the same as substitution

JXKρ = [[Y1/x1, . . . , Yn/xn]X],

where

FV(X) = {x1, . . . , xn},
∀xi ∈ FV(X).ρ(xi) = Yi.

Models of CL 103/122



Combinatory Algebras

Theorem (submodel theorem)

Let T ∈ {CLw,CLextax}. If ⟨D, ·, i, k, s⟩ is a model of T and D′ is a subset of D which
contains i, k and s and is closed under ·, then ⟨D′, ·, i, k, s⟩ is a model of T .

Definition (interiors)

Let T ∈ {CLw,CLextax} and D = ⟨D, ·, i, k, s⟩ a model of T . The interior of D is

D◦ = {JXK : X closed}.

Theorem (interiors)

Let T ∈ {CLw,CLextax}. The interior of a model of T is also a model of T .
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Models of Lambda Calculus



The Definition of Lambda Model

Definition (λ-model)

A λ-model is a triple D = ⟨D, ·, J K⟩ where
1. ⟨D, ·⟩ is an applicative structure.

2. J K : λ-terms → D is a mapping such that for each valuation ρ

JxKρ = ρ(x),

JPQKρ = JP KDρ · JQKρ.

Jλx.P Kρ · d = JP K[d/x]ρ, for all d ∈ D,

JMKρ = JMKσ if ∀x ∈ FVM.ρ(x) = σ(x),

Jλx.P Kρ = Jλy.[y/x]P Kρ if y ̸∈ FV(M),

If (∀d ∈ D)(JP K[d/x]ρ = JQK[d/x]ρ) then Jλx.P Kρ = Jλx.QKρ.
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The Definition of Lambda Model

Theorem

Every λ-model satisfies all the provable equations if the formal theory λβ.
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The Definition of Lambda Model

Definition (models of λβη)

A model of λβη is a λ-model that satisfies the equation λx.Mx = M for all terms M and all
x /∈ FV(M).
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The Definition of Lambda Model

Example (term models)

Let T ∈ {λβ, λβη}. For each λ-term M ,

[M ] = {N : T ⊢M = N}.

The TM(T ) (the term model of T ) is ⟨D, ·, J K⟩ where

D = {[M ] :M is a λ-term},
[P ] · [Q] = [PQ],

JMKρ = [[N1/x1, . . . , Nn/xn]M ],

where

FV(M) = {x1, . . . , xn},
∀xi ∈ FV(M).ρ(xi) = Ni.
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Scott’s D∞: Complete Partial Orders

The problem

“In the λ-calculus the objects serve both as arguments and as functions to be applied
to these arguments. Therefore one would like that a semantics for λ-calculus consist
of a domain D such that its function space DD is isormorphic to D. By Cantor’s
theorem this is impossible.” [Barendregt (1981) 2004, p. 86]
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Scott’s D∞: Complete Partial Orders

Solution

Dana Scott

D∞: complete partial order

[D∞ → D∞]: continuous functions (under Scott’s topology)

D∞ ∼= [D∞ → D∞].
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Scott’s D∞: Complete Partial Orders

Definition (partially ordered sets (poset))

A poset is a structure ⟨D,⊑⟩ where D is a set and ⊑: D2 → D is transitive, anti-symmetric,
and reflexive.

Let ⟨D,⊑⟩ a poset and let X ⊆ D.

Definition (upper bound)

An upper bound (u.b) of X is any b ∈ D such

∀a ∈ X.a ⊑ b.

Definition (least upper bound (l.u.b.) (or supremum))

The l.u.b. of X called
⊔
X, it is an upper bound b of X such

∀c ∈ D.c is a u.b. of X =⇒ b ⊑ c.
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Scott’s D∞: Complete Partial Orders

Definition (bottom)

D has an element called bottom (denoted ⊥) iff

∀x ∈ D.⊥ ⊑ x.

Definition (directed sets)

Let ⟨D,⊑⟩ a poset. A subset X ⊆ D is said to be directed iff X ̸= ∅ and

∀a, b ∈ X.∃c ∈ X.a ⊑ c ∧ b ⊑ c.

Definition (complete partial orders, c.p.o.s)

A c.p.o. is a poset ⟨D,⊑⟩ such that

1. D has a ⊥.

2. Every direct subset X ⊆ D has a l.u.b.
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Scott’s D∞: Complete Partial Orders

Definition (set N+)

N+ = N ∪ {⊥} (⊥ ̸∈ N),
∀a, b ∈ N+.a ⊑ b⇐⇒ (a = ⊥ ∧ b ∈ N) ∨ a = b.

0 1 2 3 . . .

⊥

The element ⊥ represents an
undefined value (partial
functions).

a ⊑ b represents that b “is more
defined” than a or both are
equals (semantic approximation
order).

Theorem

⟨N+,⊑⟩ is a c.p.o.
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Scott’s D∞: Complete Partial Orders

Let ⟨D,⊑⟩ and ⟨D′,⊑′⟩ be c.p.o.s and φ a function φ : D → D′.

Definition (monotonicity)

The function φ is monotonic iff

a ⊑ b =⇒ φ(a) ⊑′ φ(b).

Example

Let φ : N+ → N+ be a monotonic function. If φ(⊥) = 1 then φ is a constant function, i.e.
∀n ∈ N+.φ(n) = 1.
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Scott’s D∞: Complete Partial Orders

Definition (continuity)

The function φ is continua iff, for all directed X ⊆ D

φ
(⊔

X
)
=

⊔
(φ(X)),

where

φ(X) = {φ(a) : a ∈ X}.
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Scott’s D∞: Complete Partial Orders

Definition (function-set [D → D′])

[D → D′]: For c.p.o.s ⟨D,⊑⟩ and ⟨D′,⊑′⟩, the set of all continuous functions.
For φ,ψ ∈ [D → D′], we define

φ ⊑ ψ ⇐⇒ ∀d ∈ D.φ(d) ⊑′ ψ(d).

Theorem

The function ∀d ∈ D.⊥(d) = ⊥′ is the bottom of [D → D′].

Theorem

[D → D′] is a c.p.o.
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Scott’s D∞: The Construction

Definition (sequence D0, D1, . . . )

D0 = N+,

Dn+1 = [Dn → Dn].

Theorem

Every Dn is a c.p.o.
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Scott’s D∞: The Construction

Example

From: http://en.wikibooks.org/wiki/Haskell/Denotational_semantics
The factorial function

f(n) = if n == 0 then 1else n · f(n− 1)

Approximations of the factorial function

fk+1(n) = if n == 0 then 1 else n · fk(n− 1)
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Scott’s D∞: The Construction

Example (cont.)

f0(n) = ⊥ , f1(n) =

{
1 if n is 0

⊥ else
,

f2(n) =


1 if n is 0

1 if n is 1

⊥ else

, f3(n) =


1 if n is 0

1 if n is 1

2 if n is 2

⊥ else

, . . .

Then, ⊥= f0 ⊑ f1 ⊑ f2 ⊑ . . . .
The idea is

∀n.
⊔

(f0(n) ⊑ f1(n) ⊑ f2(n) ⊑ . . . ) = f(n).

Models of Lambda Calculus 120/122



Scott’s D∞: The Construction

About the λ-model ⟨D∞, ·, J K⟩
D∞ cannot be a set of functions (no function can be applied to itself).

Scott’s idea:

Members of D∞ are infinite sequences of functions

φ = ⟨φ0, φ1, φ2, . . .⟩, where φn ∈ Dn.

Application
φ · ψ = ⟨φ1(ψ0), φ2(ψ1), . . .⟩

Self-application
φ · φ = ⟨φ1(φ0), φ2(φ1), . . .⟩
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