
Lambda Calculus and Combinatory Logic

Andrés Sicard-Raḿırez

Universidad EAFIT

Semester 2009-2

Introduction

References

Textbook: Hindley, J. Roger and Seldin, Jonathan P. [2008]. Lambda-Calculus and
Combinators. An Introduction. Cambridge University Press.

Barendregt, Henk and Barendsen, Erik [2000]. Introduction to Lambda Calculus.
Revisited edition.

Barendregt, H. P. [1981] [2004]. The Lambda Calculus. Its Syntax and Semantics.
Revised edition, 6th impression. Vol. 103. Studies in Logic and the Foundations of
Mathematics. Elsevier.

Introduction 3/122

Lambda Calculus and Combinatory Logic

“Two systems of logic which can also serve as abstract programming languages.”
[Hindley and Seldin 2008, p. ix]

The goal was to use them in the foundation of mathematics.

Introduction 4/122

Lambda Calculus

Invented by Alonzo Church (around 1930s).

The goal was to use it in the foundation of mathematics. Intended for studying functions
and recursion.

Computability model.

Model of untyped functional programming languages.

Introduction 5/122

What is the Combinatory Logic?

Invented by Moses Schönfinkel (1920) and
Haskell Curry (1927).

Intended for clarify the role of quantified variables.

Idea: To do logic and mathematics without use bound variables.

Combinators: Operators which manipulate expressions by cancellation, duplication,
bracketing and permutation.

Introduction 6/122

Lambda Calculus

Introduction

λ-calculus is a collection of several formal systems

λ-notation

Anonymous functions
Currying

Definition (λ-terms)

v ∈ V ⇒ v ∈ λ-terms (atom)

c ∈ C ⇒ c ∈ λ-terms (atom)

M,N ∈ λ-terms ⇒ (MN) ∈ λ-terms (application)

M ∈ λ-terms, x ∈ V ⇒ (λx.M) ∈ λ-terms (abstraction)

where V/C is a set of variables/constants.

Lambda Calculus 8/122

Introduction

Conventions and syntactic sugar

Application associates to the left
MN1N2 . . . Nk means (...((MN1)N2)...Nk)

Application has higher precedence
λx.PQ means (λx.(PQ))

λx1x2 . . . xn.M means (λx1.(λx2.(. . . (λxn.M) . . .)))

M ≡ N means the syntactic identity

Example

(λxyz.xz(yz))uvw ≡ ((((λx.(λy.(λz.((xz)(yz)))))u)v)w).

Lambda Calculus 9/122

Term-Structure and Substitution

Definition (P occurs in Q)

P occurs in P

If P occurs in M or in N , then P occurs in (MN)

If P occurs in M or P ≡ x, then P occurs in (λx.M)

Definition (scope)

In λx.M , M is called the scope of λx.

Lambda Calculus 10/122

Term-Structure and Substitution

Definition (free and bound occurrence of variables)

An occurrence of a variable x in a term P is called

bound if it is in the scope of a λx in P

bound and binding, iff it is the x in λx

free otherwise

Definition (bound variable of P)

If x has at least one binding occurrence in P .

Definition (free variable of P)

If x has at least one free occurrence in P .

FV(P): The set of free variables of P .

Lambda Calculus 11/122

Term-Structure and Substitution

Example

(λy.yx(λx.y(λy.z)x))vw. (whiteboard)

Definition (close term or combinator)

A term without free variables.

Lambda Calculus 12/122

Term-Structure and Substitution

Definition (substitution [N/x]M)

The result of substituting N for every free occurrence of x in M , and changing bound variables
to avoid clashes.

[N/x]x ≡ N

[N/x]a ≡ a for all atoms a ̸≡ x

[N/x](PQ) ≡ ([N/x]P [N/x]Q)

[N/x](λx.P) ≡ (λx.P)

[N/x](λy.P) ≡ (λy.P) y ̸≡ x, x ̸∈ FV(P)

[N/x](λy.P) ≡ λy.[N/x]P y ̸≡ x, x ∈ FV(P), y ̸∈ FV(N)

[N/x](λy.P) ≡ λz.[N/x][z/y]P y ̸≡ x, x ∈ FV(P), y ∈ FV(N)

where in the last equation, z is chosen to be a variable ̸∈ FV(NP).

Lambda Calculus 13/122

Term-Structure and Substitution

Example

[(λy.vy)/x](y(λv.xv)) ≡ y(λz.(λy.vy)z) (with z ̸≡ v, y, x).

Lambda Calculus 14/122

Term-Structure and Substitution

Definition (α-conversion or changed of bound variables)

Replace λx.M by λy.[y/x]M (y ̸∈ FV(M)).

Definition (α-congruence (P ≡α Q))

P is changed to Q by a finite (perhaps empty) series of α-conversions.

Lambda Calculus 15/122

Beta Reduction

Definition (β-contraction (P ▷1β Q))

Replace an occurrence of (λx.M)N (β-redex) in P by [N/x]M (contractum).

Example

Whiteboard.

Definition (β-reduction (P ▷β Q))

P is changed to Q by a finite (perhaps empty) series of β-contractions and α-conversions.

Example

(λx.(λy.yx)z)v ▷β zv.

Lambda Calculus 16/122

Beta Reduction

Definition (β-normal form)

A term which contains no β-redex.

β-nf: The set of all β-normal forms.

Example

Whiteboard.

Lambda Calculus 17/122

Beta Reduction

Theorem (Church-Rosser theorem for ▷β)

P ▷β M P ▷β N

∃T.M ▷β T ∧N ▷β T

P

M N

∃T

Corollary

If P has a β-normal form, it is unique modulo ≡α; that is, if P has β-normal forms M and N ,
then M ≡α N .

Lambda Calculus 18/122

Beta Equality

Definition (β-equality or β-convertibility (P =β Q))

Exist P0, . . . , Pn such that

P0 ≡ P

Pn ≡ Q

(∀i ≤ n− 1)(Pi ▷1β Pi+1 ∨ Pi+1 ▷1β Pi ∨ Pi ≡α Pi+1)

Theorem (Church-Rosser theorem for =β)

P =β Q

∃T.P ▷β T ∧Q ▷β T

Proof

Whiteboard.

Lambda Calculus 19/122

Beta Equality

Corollary

If P,Q ∈ β-nf and P =β Q, then P ≡α Q.

Corollary

The relation =β is non-trivial (not all terms are β-convertible to each other).

Proof

Whiteboard.

Lambda Calculus 20/122

Combinatory Logic

Introduction

Idea

To do logic and mathematics without use bound variables.

Combinators

Operators which manipulate expressions by cancellation, duplication, bracketing and permuta-
tion.

Combinatory Logic 22/122

Introduction

Example (informal)

The commutative law for addition

∀xy.x+ y = y + x,

can be written as
A = CA,

where Axy represents x+ y and C is a combinator with the property

C f x y = f y x.

Combinatory Logic 23/122

Introduction

Example (some combinators (informal))

B f g x = f (g x) composition operator

B′ f g x = g (f x) reversed composition operator

Ix = x identity operator

Kx y = x projection operator

S f g x = f x (g x) stronger composition operator

Wf x = f x x doubling operator

Combinatory Logic 24/122

Introduction

Definition (CL-terms)

v ∈ V ⇒ v ∈ CL-terms

c ∈ C ⇒ c ∈ CL-terms

X,Y ∈ CL-terms ⇒ (X Y) ∈ CL-terms

where

V : Set of variables

C = {I,K, S, . . . } : Set of atomic constants

FV(X): The set of variables occurring in X.

Combinatory Logic 25/122

Introduction

Definition (atoms, basic combinators and combinator)

An atom is a variable or atomic constant. The basic combinators are I, K and S. A combinator
is a CL-term whose only atoms are basic combinators.

Combinatory Logic 26/122

Introduction

Definition (substitution [U/x]Y)

The result of substituting U for every occurrence of x in Y :

[U/x]x ≡ U

[U/x] a ≡ a for all atoms a ̸≡ x

[U/x] (V W) ≡ ([U/x]V) ([U/x]W)

Combinatory Logic 27/122

Weak Reduction

Definition (weak redex)

The CL-terms IX, KX Y and SX Y Z.

Definition (weak contraction (U ▷1w V))

Replace an occurrence of a weak redex in U using:

IX by X,

KX Y by X,

SX Y Z by X Z (Y Z).

Combinatory Logic 28/122

Weak Reduction

Definition (weak reduction (U ▷w V))

The CL-term U is changed to V by a finite (perhaps empty) series of weak contractions.

Definition (weak normal form)

A CL-term which contains no weak redex.

Combinatory Logic 29/122

Weak Reduction

Example

Let B ≡ S (KS)K. Then BX Y Z ▷w X (Y Z) (whiteboard).

Example

Let W ≡ S S (K I). Then

i) WX Y ▷w X Y Y and

ii) WWW ▷w WWW ▷w · · ·

Combinatory Logic 30/122

Weak Reduction

Example

Let B ≡ S (KS)K. Then BX Y Z ▷w X (Y Z) (whiteboard).

Example

Let W ≡ S S (K I). Then

i) WX Y ▷w X Y Y and

ii) WWW ▷w WWW ▷w · · ·

Combinatory Logic 31/122

Weak Reduction

Theorem (substitution theorem for ▷w)

X ▷w Y ⇒ [U/x]X ▷w [U/x]Y.

Theorem (Church-Rosser theorem for ▷w)

P ▷w M P ▷w N
∃T.M ▷w T ∧N ▷w T

Corollary (uniqueness of nf)

A CL-term can have at most one weak normal form.

Combinatory Logic 32/122

Abstraction

Idea

To define a term [x].M such that

([x].M)N ▷w [N/x]M.

Definition (abstraction)

For every term M and every variable x,

[x].M ≡ KM if x ̸∈ FV(M) (1)

[x].x ≡ I (2)

[x].U x ≡ U if x ̸∈ FV(U) (3)

[x].U V ≡ S ([x].U) ([x].V) if neither (1) nor (3) applies (4)

Combinatory Logic 33/122

Abstraction

Example

[x].x y ≡ S I (K y) (whiteboard).

Combinatory Logic 34/122

Abstraction

Theorem

For every term M and every variable x, [x].M is always defined, does not contain x and
([x].M)x ▷w M .

Proof

Whiteboard.

Theorem

For every term M and every variable x,

([x].M)N ▷w [N/x]M.

Notation

[x1, x2, . . . , xn].M ≡ [x1].([x2].(. . . ([xn].M) . . .)).

Combinatory Logic 35/122

Abstraction

Example

[x, y].x y y ≡ S S (K I) ≡ W (whiteboard).

Combinatory Logic 36/122

Weak Equality

Definition (weak equality or weak convertibility (X =w Y))

Exist X0, . . . , Xn such that

i) X0 ≡ X

ii) Xn ≡ Y

iii) (∀i ≤ n− 1)(Xi ▷1w Xi+1 ∨ Xi+1 ▷1w Xi)

Theorem (Church-Rosser theorem for =w)

X =w Y
∃T.X ▷w T ∧ Y ▷w T

Corollary

If X and Y are distinct weak normal forms, them X ̸=w Y ; in particular S ̸=w K. Hence =w is
non-trivial in the sense that not all terms are weakly equal.

Combinatory Logic 37/122

Weak Equality

About the ‘weak’ adjective

X =β Y ⇒ λx.X =β λx.Y,

but
X =w Y ̸⇒ [x].X =w [x].Y.

Example

Let X ≡ Sx y z and Y ≡ x z (y z). Then X =w Y , but [x].X ̸=w [x].Y , where

[x].X ≡ S (S S (K y)) (K z),

[x].Y ≡ S (S I (K z)) (K (y z)).

Combinatory Logic 38/122

The Power of λ

Introduction

Notation Meaning for λ Meaning for CL

term λ-term CL-term
X ≡ Y X ≡α Y X is identical to Y
X ▷β,w Y X ▷β Y X ▷w Y
X =β,w Y X =β Y X =w Y
λx λx [x]

The Power of λ and Combinators 40/122

The Fixed-Point Theorem

Idea

For every term X there is a term P such

X P =β,w P.

The term P is called a fixed-point of X.

The Power of λ and Combinators 41/122

The Fixed-Point Theorem

Theorem (fixed-point theorem)

There is a combinator Y such that for every term X

1. YX =β,w X (YX).

2. YX ▷β,w X (YX).

Proof.

YTuring ≡ U U , where U ≡ λu.λx.x (uux) (whiteboard).

The Power of λ and Combinators 42/122

The Fixed-Point Theorem

Theorem (fixed-point theorem)

There is a combinator Y such that for every term X

1. YX =β,w X (YX).

2. YX ▷β,w X (YX).

Proof.

YTuring ≡ U U , where U ≡ λu.λx.x (uux) (whiteboard).

The Power of λ and Combinators 43/122

The Fixed-Point Theorem

Corollary

For every term Z and n ≥ 0, the equation

x y1 . . . yn = Z

can be solved for x. That is, there is a term X such that

X y1 . . . yn =β,w [X/x]Z.

Proof.

X ≡ Y (λ.x y1 . . . yn.Z) (whiteboard).

The Power of λ and Combinators 44/122

The Fixed-Point Theorem

Corollary

For every term Z and n ≥ 0, the equation

x y1 . . . yn = Z

can be solved for x. That is, there is a term X such that

X y1 . . . yn =β,w [X/x]Z.

Proof.

X ≡ Y (λ.x y1 . . . yn.Z) (whiteboard).

The Power of λ and Combinators 45/122

The Fixed-Point Theorem

Definition (fixed-point combinator)

A fixed-point combinator is any combinator Y such Y X =β,w X (YX), for all terms X.

The Power of λ and Combinators 46/122

The Fixed-Point Theorem

Example

YCurry-Rosenbloom ≡ λx.V V , where V ≡ λy.x (y y) is a fixed-point combinator. (Whiteboard)

The Power of λ and Combinators 47/122

Böhms’s Theorem

Definition (η-redex)

In λ-calculus, a λ-term of form λx.M x with x ̸∈ FV(M) is called an η-redex and is said to
η-contract to M .

Definition (βη-normal forms)

In λ-calculus, a λ-term which contains no β-redex and no η-redex.

βη-nf: The set of all βη-normal forms.

Example

The λ-term λu.λx.u x is in β-nf but not in βη-nf.

The Power of λ and Combinators 48/122

Böhms’s Theorem

Definition (strong normal forms)

In CL, the class of strong nf is defined inductively by

All atoms other than I,K and S are in strong nf.

If X1, . . . , Xn are in strong nf, and a is any atom ̸≡ I,K,S, then aX1 . . . Xn is in strong
nf.

If X is in strong nf, then so is [x].X.

The Power of λ and Combinators 49/122

Böhms’s Theorem

Theorem (Böhms’s theorem)

Let M and N be combinators, either in βη-normal form (in λ) or in strong normal form (in
CL). If M ̸≡ N , then there exists n ≥ 0 and combinators L1, . . . , Ln such that

M L1 . . . Ln x y ▷β,w x,

N L1 . . . Ln x y ▷β,w y.

The Power of λ and Combinators 50/122

Böhms’s Theorem

Corollary

Let M and N be distinct combinators in βη-normal form (in λ) or in strong normal form (in
CL). If we add the equation M = N as a new axiom to the definition =β or =w, then all terms
become equal.

Proof

Whiteboard.

The Power of λ and Combinators 51/122

Leftmost Reduction

Idea

Proving that a given term has no normal form.

Definition (contraction (X ▷R Y))

(X ▷R Y): R is an redex in X and Y is the result of contracting R in X.

Example

(λx.(λy.y x) z) v ▷(λy.y x) z (λx.z x) v.

The Power of λ and Combinators 52/122

Leftmost Reduction

Definition (reduction)

A reduction ρ is

CL : X1 ▷R1 X2 ▷R2 · · ·
λ : X1 ▷R1 Y1 ≡α X2 ▷R2 · · ·

The Power of λ and Combinators 53/122

Leftmost Reduction

Definition

Length of a reduction: The number of its contractions.

Terminus: The last term of a reduction of length finite.

A reduction ρ has maximal length iff either ρ is infinite or its terminus contains no redexes.

A redex is maximal iff it is not contained in any other redex.

A (maximal) redex is the left most maximal redex iff it is the leftmost of the maximal redexes.

Leftmost reduction: In every contraction, the contracted redex is the leftmost maximal redex.

The Power of λ and Combinators 54/122

Leftmost Reduction

Example

Let X ≡ S (I (Kx y)) (I z).

Redexes: I (Kx y), Kx y and I z.
Maximal redexes: I (Kx y) and I z.
Leftmost redex: I (Kx y).

Example

The leftmost reduction for X.

S (I (Kx y))(I z) ▷1w S (Kx y)(I z)

▷1w Sx (I z)

▷1w Sx z

The Power of λ and Combinators 55/122

Leftmost Reduction

Example

Let X ≡ S (I (Kx y)) (I z).

Redexes: I (Kx y), Kx y and I z.
Maximal redexes: I (Kx y) and I z.
Leftmost redex: I (Kx y).

Example

The leftmost reduction for X.

S (I (Kx y))(I z) ▷1w S (Kx y)(I z)

▷1w Sx (I z)

▷1w Sx z

The Power of λ and Combinators 56/122

Leftmost Reduction

Theorem (leftmost reduction theorem)

If a term X has a normal form X∗, then the leftmost reduction of X is finite and ends at X∗.

The Power of λ and Combinators 57/122

Representing the Computable Functions

Representability

Definition

Let X,Y be λ-terms or CL-terms. Then

X0Y ≡ Y,

Xn+1Y ≡ X(XnY).

Definition (Church numerals)

For λ: n ≡ λxy.xny,

For CL: n ≡ (SB)n(KI),where B ≡ S(KS)K.

Representing the Computable Functions 59/122

Representability

Definition (representability)

Let φ be a partial function φ : Nm → N. A term X represents φ iff

φ(n1, . . . , nm) = p⇒ Xn1 . . . nm =β,w p,

φ(n1, . . . , nm) does not exist ⇒ Xn1 . . . nm has no nf.

Representing the Computable Functions 60/122

Representability

Example

The successor function σ(n) = n+ 1 is represented by

In λ: σ ≡ λuxy.x(uxy) (whiteboard)

In CL: σ ≡ SB

Definition (conditional operator)

D ≡ λxyz.z(Ky)x

For all X,Y

DXY 0 =β,w X (whiteboard)

DXY k + 1 =β,w Y (whiteboard)

DXY n is called if n = 0 then X, else Y .

Representing the Computable Functions 61/122

Recursion Using Fixed-Points

Example (informal)

(From: Peyton Jones [1987])

fac ≡ λn.if n = 0 then 1 else n ∗ fac (n− 1)

fac ≡ λn.(. . . fac . . .)

fac ≡ (λfn.(. . . f . . .))fac

h ≡ λfn.(. . . f . . .) (not recursive!)

fac ≡ h fac (fac is a fixed-point of h!)

fac ≡ Yh

Representing the Computable Functions 62/122

Recursion Using Fixed-Points

Example (cont.)

fac 1 ≡ Yh 1

=β,w h(Yh) 1

≡ (λfn.(. . . f . . .))(Yh) 1

▷β,w if 1 = 0 then 1 else 1 ∗ (Yh 0)

▷β,w 1 ∗ (Yh 0)

=β,w 1 ∗ (h(Yh) 0)
≡ 1 ∗ ((λfn.(. . . f . . .))(Yh)0)
▷β,w 1 ∗ (if 0 = 0 then 1 else 1 ∗ (Yh (−1)))

▷β,w 1 ∗ 1
▷β,w 1

Representing the Computable Functions 63/122

Representing the Computable Functions

Theorem (representation of Turing-computable functions)

In λ or CL every Turing-computable function can be represented by a combinator.

Representing the Computable Functions 64/122

The Formal Theories λβ and CLw

The Definitions of the Theories

Definition (λβ, formal theory of β-equality)

Formulas: M = N , where M,N ∈ λ-terms.

Axiom-schemes:

(α) λx.M = λy.[y/x]M if y ∈ FV(M),

(β) (λx.M)N = [N/x]M,

(ρ) M =M.

Rules of inference:

M =M ′
(µ)

NM = NM ′

M =M ′
(ν)

MN =M ′N

M =M ′
(ξ)

λx.M = λx.M ′

M = N N = P(τ)
M = P

M = N(σ)
N =M

The Formal Theories λβ and CLw 66/122

The Definitions of the Theories

Definition (λβ, formal theory of β-equality)

Deductions: λβ,A1, . . . , An ⊢ B (There is a deduction of B from the assumptions A1, . . . , An

in λβ).

Theorems: λβ ⊢ B (The formula B is probable in λβ).

The Formal Theories λβ and CLw 67/122

The Definitions of the Theories

Example

Let M and N be two closed terms

(λx.(λy.x))M = [M/x]λy.x ≡ λy.M
(ν)

(λx.(λy.x))MN = (λy.M)N (λy.M)N = [N/y]M ≡M
(τ)

(λx.(λy.x))MN =M

That is to say, λβ ⊢ (λxy.x)MN =M .

Remark

λβ is a equational theory and it is a logic-free theory (there are not logical connectives or
quantifiers in its formulae).

The Formal Theories λβ and CLw 68/122

The Definitions of the Theories

Definition (λβ, formal theory of β-reduction)

(Similar to the formal theory of β-equality, but:

1. Formulas: M ▷β N .

2. To change ‘=’ by ‘▷β.

3. Remove the rule (σ).)

Formulas: M ▷β N , where M,N ∈ λ-terms.

Axiom-schemes:

(α) λx.M ▷β λy.[y/x]M if y ∈ FV(M),

(β) (λx.M)N ▷β [N/x]M,

(ρ) M ▷β M.

The Formal Theories λβ and CLw 69/122

The Definitions of the Theories

Definition (λβ, formal theory of β-reduction)

Rules of inference:

M ▷β M
′

(µ)
NM ▷β NM

′

M ▷β M
′

(ν)
MN ▷β M

′N

M ▷β M
′

(ξ)
λx.M ▷β λx.M

′

M ▷β N N ▷β P
(τ)

M ▷β P

Theorem

M ▷β N ⇐⇒ λβ ⊢M ▷β N,

M =β N ⇐⇒ λβ ⊢M = N.

The Formal Theories λβ and CLw 70/122

The Definitions of the Theories

Definition (CLw, formal theory of weak equality)

Formulas: M = N , where M,N ∈ CL-terms

Axiom-schemes:

(I) IX = X,

(K) KXY = X,

(S) SXY Z = XZ(Y Z),

(ρ) X = X.

Rules of inference: The same rules than the theory λβ except the rule (ξ).

Deductions: CLw, A1, . . . , An ⊢ B.

Theorems: CLw ⊢ B.

The Formal Theories λβ and CLw 71/122

The Definitions of the Theories

Definition (CLw, formal theory of weak reduction)

Similar to the formal theory of β-reduction.

Theorem

M ▷w N ⇐⇒ CLw ⊢M ▷w N,

M =w N ⇐⇒ CLw ⊢M = N.

The Formal Theories λβ and CLw 72/122

Equivalence of Theories

T : Theory

F : Formulas of T

Rule of inference R(φ): Given by a partial function φ : Fn → F

Instance of R(φ):

A1, . . . , An

B

The Formal Theories λβ and CLw 73/122

Equivalence of Theories

Notation

T , T ′: Theories with the same formulas
R: Inference rule
C: Formula

Definition (derivable rules)

R is derivable in T iff for each instance of R (with premises A1, . . . , An and conclusion B)

T , A1, . . . , An ⊢ B.

Definition (admissible rules)

R is admissible in T iff adding R to T as a new rule will not increase the set of theorems of T .

Definition (derivable and admissible formula)

T ⊢ C.
The Formal Theories λβ and CLw 74/122

Equivalence of Theories

Theorem

If R is derivable in T , then R is admissible in T . The implication in the opposite direction does
not hold in general.

Definition (theories theorem-equivalent)

T and T ′ are theorem-equivalent iff every rule and axiom of T is admissible in T ′ and vice-versa.

Definition (theories rule-equivalent)

T and T ′ are rule-equivalent iff every rule and axiom of T is derivable in T ′ and vice-versa.

The Formal Theories λβ and CLw 75/122

Equivalence of Theories

Definition (equality relation determined by a theory)

T : Formal theory with some equations X = Y .

The equality relation determined by T is =T is:

X =T Y ⇐⇒ T ⊢ X = Y.

The Formal Theories λβ and CLw 76/122

Extensionality in Lambda Calculus

Extensional Equality

For functions: ∀x (f(x) = g(x)) ⇒ f = g.

For programs: It two programs compute the same function, are they the same program?

Theorem

The theory λβ is not extensional.

Proof.

Let F ≡ y and G ≡ λx.yx. Then for all X

λβ ⊢ FX = GX,

but
λβ ̸⊢ F = G.

Extensionality in Lambda Calculus 78/122

Extensional Equality

Rule and axiom-scheme to express extensionality

Mx = Nx(ζ) if x ̸∈ FV(MN),
M = N

(η) λx.Mx =M if x ̸∈ FV(M).

Definition (theories λβζ and λβη)

λβζ :λβ + (ζ),

λβη :λβ + (η).

Extensionality in Lambda Calculus 79/122

Extensional Equality

Theorem

The theories λβζ and λβη are rule-equivalents.

Proof.

1. (ζ) is derivable in λβη, i.e.
λβη,Mx = Nx ⊢M = N (with x ̸∈ FV(MN)). (Whiteboard).

2. (η) is derivable in λβζ, i.e.
λβζ ⊢ λx.Mx =M (with x ̸∈ FV(M)). (Whiteboard).

Definition (extensional equality in λ)

M =λext N ⇐⇒ λβζ ⊢M = N.

Extensionality in Lambda Calculus 80/122

Beta-Eta Reduction in Lambda Calculus

Definition (η-redex and contractum)

An η-redex is any λ-term λx.Mx with x ̸∈ FV(M). Its contractum is M .

Definition (η-contraction (P ▷1η Q))

Replace an occurrence of a η-redex in P by its contractum.

Definition (η-reduction (P ▷η Q))

P is changed to Q by a finite (perhaps empty) series of η-contractions and α-conversions.

Extensionality in Lambda Calculus 81/122

Beta-Eta Reduction in Lambda Calculus

Definition (βη-redex)

An βη-redex is a β-redex or an η-redex.

Definition (βη-contraction (P ▷1βη Q))

Replace an occurrence of a βη-redex in P by its contractum.

Definition (βη-reduction (P ▷βη Q))

P is changed to Q by a finite (perhaps empty) series of βη-contractions and α-conversions.

Extensionality in Lambda Calculus 82/122

Beta-Eta Reduction in Lambda Calculus

Definition (βη-normal forms)

A λ-term which contains no βη-redex.

Theorem (Church-Rosser theorem for ▷βη)

P ▷βη M P ▷βη N

∃T.M ▷βη T ∧N ▷β T

Theorem (relation between ▷βη and =λext)

P =λext Q iff Q can be obtained from P by a finite (perhaps empty) series of βη-contractions
and reversed βη-contractions and α-conversions.

Extensionality in Lambda Calculus 83/122

Beta-Eta Reduction in Lambda Calculus

Theorem (Church-Rosser theorem for =λext)

P =λext Q

∃T.P ▷βη T ∧Q ▷βη T

Corollary

The relation =λext is non-trivial (not all terms are βη-convertible to each other).

Extensionality in Lambda Calculus 84/122

Extensionality in Combinatory Logic

Extensional Equality

Theorem

The theory CLw is not extensional.

Proof.

Let X ≡ S(Ku)I and Y ≡ u, then for all M

CLw ⊢ XM = YM,

but
CLw ̸⊢ X = Y.

Extensionality in Combinatory Logic 86/122

Extensional Equality

Rule and axiom-scheme to express extensionality

Xx = Y x(ζ) if x ̸∈ FV(XY),
X = Y

X = Y(ξ)
[x].X = [x].Y

(η) [x].Ux = U if x ̸∈ FV(U).

Definition (theories CLζ and CLξ)

CLζ : CL + (ζ),

CLξ : CL + (ξ).

Extensionality in Combinatory Logic 87/122

Extensional Equality

Exercise

Probe that neither (ζ) nor (ξ) are admissible in CLw (whiteboard).

Extensionality in Combinatory Logic 88/122

Extensional Equality

Definition (extensional equality in CL)

X =Cext Y ⇐⇒ CLζ ⊢ X = Y.

Example

SK =Cext KI. (Whiteboard).

Extensionality in Combinatory Logic 89/122

Extensional Equality

Theorem

The theory CLξ determines the same equality-relation =Cext as CLζ does.

Proof.

1. (ζ) is derivable in CLξ, i.e.

CLξ,Xx = Y x ⊢ X = Y (with x ̸∈ FV(XY)). (Whiteboard).

2. (ξ) is derivable in CLζ, i.e.

CLζ,X = Y ⊢ [x].X = [x].Y . (Whiteboard).

Extensionality in Combinatory Logic 90/122

Axioms for Extensionality in CL

Definition (formal theory CLextax)

CLextax : CLw + E-ax 1 + · · ·+ E-ax 5, where

S(S(KS)(S(KK)(S(KS)K))) = S(KK) (E-ax 1)

S(S(KS)K)(KI) = I (E-ax 2)

S(KI) = I (E-ax 3)

S(KS)(S(KK)) = K (E-ax 4)

S(K(S(KS)))(S(KS)(S(KS))) =

S(S(KS)(S(KK)(S(KS)(S(K(S(KS)))S))))(KS) (E-ax 5)

Extensionality in Combinatory Logic 91/122

Axioms for Extensionality in CL

Definition (other version of E-ax 1, . . . ,E-ax 5)

[x, y, v]. (Kxv)(Kyv) = [x, y, v].xy (E-ax 1)

[x, v]. (Kxv)(Iv) = [x, v].xv (E-ax 2)

[x, v]. I(xv) = [x, v].xv (E-ax 3)

[x, y, v].K(xv)(yv) = [x, y, v].xv (E-ax 4)

[x, y, z, v].S(xv)(yv)(zv) = [x, y, z, v].xv(zv)(yv(zv)) (E-ax 5)

Motivation

We are looking axioms which will make (ξ) admissible in CLextax:

CLextax ⊢ X = Y =⇒ CLextax ⊢ [x].X = [x].Y.

Extensionality in Combinatory Logic 92/122

Axioms for Extensionality in CL

Theorem

The theory CLextax is theorem-equivalent to CLξ.

Extensionality in Combinatory Logic 93/122

Strong Reduction

Definition (strong reduction �)

The formal theory of strong reduction:

Formulas: X � Y , where X,Y ∈ CL-terms

Axiom-schemes and rules: The same than CLw changed ‘=’ by ‘� ’ and the rule (σ) omitted.

New rule added:

X � Y(ξ)
[x].X � [x].Y

Example

SK � KI. (Whiteboard).

Extensionality in Combinatory Logic 94/122

Strong Reduction

Theorem (Church-Rosser theorem for �)

U � X U � Y
∃Z.X � Z ∧ Z � Y

Definition (strong irreducibility)

X is called strongly irreducible iff, for all Y

X � Y =⇒ Y ≡ X.

Theorem

The strongly irreducible CL-terms are exactly the terms in the strong nf class.

Extensionality in Combinatory Logic 95/122

Models of CL

Applicative Structures

Definition (valuation)

Let D a set. A valuation is a mapping ρ : Vars → D.

Notation: [d/x]ρ =

{
ρ(y), if y ̸= x;

d, otherwise.

Definition (applicative structure)

An applicative structure is a structure ⟨D, ·⟩ where
1. |D| ≥ 2.

2. · : D2 → D.

Models of CL 97/122

Combinatory Algebras

Definition (combinatory algebra)

A combinatory algebra is a structure (convention: association to the left for ·) D = ⟨D, ·⟩ where

1. |D| ≥ 2.

2. · : D2 → D.

3. There are two elements k, s ∈ D such that for all a, b, c ∈ D,

k · a · b = a, (5)

s · a · b · c = a · c · (b · c). (6)

Models of CL 98/122

Combinatory Algebras

Definition (model of CLw)

A model of CLw is a structure ⟨D, ·, i, k, s⟩ where
1. ⟨D, ·⟩ is a combinatory algebra.

2. The elements k and s satisfy (5) and (6).

3. The element i satisfies i = s · k · k.

Definition (model of CLextax)

A model of CLextax is a model ⟨D, ·, i, k, s⟩ of CLw that satisfies the extensionality axioms
E-ax 1, . . . ,E-ax 5.

Models of CL 99/122

Combinatory Algebras

Definition (interpretation of a term)

Let D = ⟨D, ·, i, k, s⟩ where ⟨D, ·⟩ is a combinatory algebra and ρ a valuation. The interpretation
of X in D under ρ, denoted JXKDρ , is defined by

JXKDρ : CL-term → D

JxKDρ = ρ(x),

JIKDρ = i,

JKKDρ = k,

JSKDρ = s,

JXY KDρ = JXKDρ · JY KDρ .

Models of CL 100/122

Combinatory Algebras

Definition (satisfaction)

D, ρ |= X = Y ⇐⇒ JXKDρ = JY KDρ ,

D |= X = Y ⇐⇒ (∀ρ)(D, ρ |= X = Y).

Models of CL 101/122

Combinatory Algebras

Example (term model)

Let T ∈ {CLw,CLextax}. For each CL-term X,

[X] = {Y : T ⊢ X = Y }.

The TM(T) (the term model of T) is ⟨D, ·, i, k, s⟩ where

D = {[X] : X is a CL-term},
[X] · [Y] = [XY],

i = [I],

k = [K],

s = [S].

Models of CL 102/122

Combinatory Algebras

Example (cont.)

In this model, interpretation is the same as substitution

JXKρ = [[Y1/x1, . . . , Yn/xn]X],

where

FV(X) = {x1, . . . , xn},
∀xi ∈ FV(X).ρ(xi) = Yi.

Models of CL 103/122

Combinatory Algebras

Theorem (submodel theorem)

Let T ∈ {CLw,CLextax}. If ⟨D, ·, i, k, s⟩ is a model of T and D′ is a subset of D which
contains i, k and s and is closed under ·, then ⟨D′, ·, i, k, s⟩ is a model of T .

Definition (interiors)

Let T ∈ {CLw,CLextax} and D = ⟨D, ·, i, k, s⟩ a model of T . The interior of D is

D◦ = {JXK : X closed}.

Theorem (interiors)

Let T ∈ {CLw,CLextax}. The interior of a model of T is also a model of T .

Models of CL 104/122

Models of Lambda Calculus

The Definition of Lambda Model

Definition (λ-model)

A λ-model is a triple D = ⟨D, ·, J K⟩ where
1. ⟨D, ·⟩ is an applicative structure.

2. J K : λ-terms → D is a mapping such that for each valuation ρ

JxKρ = ρ(x),

JPQKρ = JP KDρ · JQKρ.

Jλx.P Kρ · d = JP K[d/x]ρ, for all d ∈ D,

JMKρ = JMKσ if ∀x ∈ FVM.ρ(x) = σ(x),

Jλx.P Kρ = Jλy.[y/x]P Kρ if y ̸∈ FV(M),

If (∀d ∈ D)(JP K[d/x]ρ = JQK[d/x]ρ) then Jλx.P Kρ = Jλx.QKρ.

Models of Lambda Calculus 106/122

The Definition of Lambda Model

Theorem

Every λ-model satisfies all the provable equations if the formal theory λβ.

Models of Lambda Calculus 107/122

The Definition of Lambda Model

Definition (models of λβη)

A model of λβη is a λ-model that satisfies the equation λx.Mx = M for all terms M and all
x /∈ FV(M).

Models of Lambda Calculus 108/122

The Definition of Lambda Model

Example (term models)

Let T ∈ {λβ, λβη}. For each λ-term M ,

[M] = {N : T ⊢M = N}.

The TM(T) (the term model of T) is ⟨D, ·, J K⟩ where

D = {[M] :M is a λ-term},
[P] · [Q] = [PQ],

JMKρ = [[N1/x1, . . . , Nn/xn]M],

where

FV(M) = {x1, . . . , xn},
∀xi ∈ FV(M).ρ(xi) = Ni.

Models of Lambda Calculus 109/122

Scott’s D∞: Complete Partial Orders

The problem

“In the λ-calculus the objects serve both as arguments and as functions to be applied
to these arguments. Therefore one would like that a semantics for λ-calculus consist
of a domain D such that its function space DD is isormorphic to D. By Cantor’s
theorem this is impossible.” [Barendregt (1981) 2004, p. 86]

Models of Lambda Calculus 110/122

Scott’s D∞: Complete Partial Orders

Solution

Dana Scott

D∞: complete partial order

[D∞ → D∞]: continuous functions (under Scott’s topology)

D∞ ∼= [D∞ → D∞].

Models of Lambda Calculus 111/122

Scott’s D∞: Complete Partial Orders

Definition (partially ordered sets (poset))

A poset is a structure ⟨D,⊑⟩ where D is a set and ⊑: D2 → D is transitive, anti-symmetric,
and reflexive.

Let ⟨D,⊑⟩ a poset and let X ⊆ D.

Definition (upper bound)

An upper bound (u.b) of X is any b ∈ D such

∀a ∈ X.a ⊑ b.

Definition (least upper bound (l.u.b.) (or supremum))

The l.u.b. of X called
⊔
X, it is an upper bound b of X such

∀c ∈ D.c is a u.b. of X =⇒ b ⊑ c.

Models of Lambda Calculus 112/122

Scott’s D∞: Complete Partial Orders

Definition (bottom)

D has an element called bottom (denoted ⊥) iff

∀x ∈ D.⊥ ⊑ x.

Definition (directed sets)

Let ⟨D,⊑⟩ a poset. A subset X ⊆ D is said to be directed iff X ̸= ∅ and

∀a, b ∈ X.∃c ∈ X.a ⊑ c ∧ b ⊑ c.

Definition (complete partial orders, c.p.o.s)

A c.p.o. is a poset ⟨D,⊑⟩ such that

1. D has a ⊥.

2. Every direct subset X ⊆ D has a l.u.b.

Models of Lambda Calculus 113/122

Scott’s D∞: Complete Partial Orders

Definition (set N+)

N+ = N ∪ {⊥} (⊥ ̸∈ N),
∀a, b ∈ N+.a ⊑ b⇐⇒ (a = ⊥ ∧ b ∈ N) ∨ a = b.

0 1 2 3 . . .

⊥

The element ⊥ represents an
undefined value (partial
functions).

a ⊑ b represents that b “is more
defined” than a or both are
equals (semantic approximation
order).

Theorem

⟨N+,⊑⟩ is a c.p.o.

Models of Lambda Calculus 114/122

Scott’s D∞: Complete Partial Orders

Let ⟨D,⊑⟩ and ⟨D′,⊑′⟩ be c.p.o.s and φ a function φ : D → D′.

Definition (monotonicity)

The function φ is monotonic iff

a ⊑ b =⇒ φ(a) ⊑′ φ(b).

Example

Let φ : N+ → N+ be a monotonic function. If φ(⊥) = 1 then φ is a constant function, i.e.
∀n ∈ N+.φ(n) = 1.

Models of Lambda Calculus 115/122

Scott’s D∞: Complete Partial Orders

Definition (continuity)

The function φ is continua iff, for all directed X ⊆ D

φ
(⊔

X
)
=

⊔
(φ(X)),

where

φ(X) = {φ(a) : a ∈ X}.

Models of Lambda Calculus 116/122

Scott’s D∞: Complete Partial Orders

Definition (function-set [D → D′])

[D → D′]: For c.p.o.s ⟨D,⊑⟩ and ⟨D′,⊑′⟩, the set of all continuous functions.
For φ,ψ ∈ [D → D′], we define

φ ⊑ ψ ⇐⇒ ∀d ∈ D.φ(d) ⊑′ ψ(d).

Theorem

The function ∀d ∈ D.⊥(d) = ⊥′ is the bottom of [D → D′].

Theorem

[D → D′] is a c.p.o.

Models of Lambda Calculus 117/122

Scott’s D∞: The Construction

Definition (sequence D0, D1, . . .)

D0 = N+,

Dn+1 = [Dn → Dn].

Theorem

Every Dn is a c.p.o.

Models of Lambda Calculus 118/122

Scott’s D∞: The Construction

Example

From: http://en.wikibooks.org/wiki/Haskell/Denotational_semantics
The factorial function

f(n) = if n == 0 then 1else n · f(n− 1)

Approximations of the factorial function

fk+1(n) = if n == 0 then 1 else n · fk(n− 1)

Models of Lambda Calculus 119/122

http://en.wikibooks.org/wiki/Haskell/Denotational_semantics

Scott’s D∞: The Construction

Example (cont.)

f0(n) = ⊥ , f1(n) =

{
1 if n is 0

⊥ else
,

f2(n) =

1 if n is 0

1 if n is 1

⊥ else

, f3(n) =

1 if n is 0

1 if n is 1

2 if n is 2

⊥ else

, . . .

Then, ⊥= f0 ⊑ f1 ⊑ f2 ⊑
The idea is

∀n.
⊔

(f0(n) ⊑ f1(n) ⊑ f2(n) ⊑ . . .) = f(n).

Models of Lambda Calculus 120/122

Scott’s D∞: The Construction

About the λ-model ⟨D∞, ·, J K⟩
D∞ cannot be a set of functions (no function can be applied to itself).

Scott’s idea:

Members of D∞ are infinite sequences of functions

φ = ⟨φ0, φ1, φ2, . . .⟩, where φn ∈ Dn.

Application
φ · ψ = ⟨φ1(ψ0), φ2(ψ1), . . .⟩

Self-application
φ · φ = ⟨φ1(φ0), φ2(φ1), . . .⟩

Models of Lambda Calculus 121/122

References

Barendregt, H. P. [1981] (2004). The Lambda Calculus. Its Syntax and Semantics. Revised
edition, 6th impression. Vol. 103. Studies in Logic and the Foundations of Mathematics. Elsevier
(cit. on pp. 3, 110).

Barendregt, Henk and Barendsen, Erik (2000). Introduction to Lambda Calculus. Revisited
edition (cit. on p. 3).

Hindley, J. Roger and Seldin, Jonathan P. (2008). Lambda-Calculus and Combinators. An
Introduction. Cambridge University Press (cit. on pp. 3, 4).

Peyton Jones, Simon L. (1987). The Implementation of Functional Programming Languages.
Series in Computer Sciences. Prentice-Hall International (cit. on p. 62).

	Introduction
	Lambda Calculus
	Combinatory Logic
	The Power of Lambda and Combinators
	Representing the Computable Functions
	The Formal Theories Lambda Beta and CLw
	Extensionality in Lambda Calculus
	Extensionality in Combinatory Logic
	Models of CL
	Models of Lambda Calculus
	References

