Lambda Calculus and Combinatory Logic

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2009-2

References

- Textbook: Hindley, J. Roger and Seldin, Jonathan P. [2008]. Lambda-Calculus and Combinators. An Introduction. Cambridge University Press.
- Barendregt, Henk and Barendsen, Erik [2000]. Introduction to Lambda Calculus. Revisited edition.
- Barendregt, H. P. [1981] [2004]. The Lambda Calculus. Its Syntax and Semantics. Revised edition, 6th impression. Vol. 103. Studies in Logic and the Foundations of Mathematics. Elsevier.

Lambda Calculus and Combinatory Logic

- "Two systems of logic which can also serve as abstract programming languages." [Hindley and Seldin 2008, p. ix]
- The goal was to use them in the foundation of mathematics.

Lambda Calculus

Invented by Alonzo Church (around 1930s).

- The goal was to use it in the foundation of mathematics. Intended for studying functions and recursion.
- Computability model.
- Model of untyped functional programming languages.

What is the Combinatory Logic?

Invented by Moses Schönfinkel (1920) and Haskell Curry (1927).

- Intended for clarify the role of quantified variables.
- Idea: To do logic and mathematics without use bound variables.
- Combinators: Operators which manipulate expressions by cancellation, duplication, bracketing and permutation.

Lambda Calculus

- λ -calculus is a collection of several formal systems
- λ -notation
 - Anonymous functions
 - Currying

Definition (λ -terms)

 $\begin{array}{ll} v \in V \Rightarrow v \in \lambda \text{-terms} & (\text{atom}) \\ c \in C \Rightarrow c \in \lambda \text{-terms} & (\text{atom}) \\ M, N \in \lambda \text{-terms} \Rightarrow (MN) \in \lambda \text{-terms} & (\text{application}) \\ M \in \lambda \text{-terms}, x \in V \Rightarrow (\lambda x.M) \in \lambda \text{-terms} & (\text{abstraction}) \end{array}$

where V/C is a set of variables/constants.

Conventions and syntactic sugar

- Application associates to the left $MN_1N_2...N_k$ means $(...((MN_1)N_2)...N_k)$
- Application has higher precedence $\lambda x.PQ$ means $(\lambda x.(PQ))$
- $\lambda x_1 x_2 \dots x_n M$ means $(\lambda x_1 (\lambda x_2 (\dots (\lambda x_n M) \dots)))$
- $M \equiv N$ means the syntactic identity

Example

 $(\lambda xyz.xz(yz))uvw \equiv ((((\lambda x.(\lambda y.(\lambda z.((xz)(yz)))))u)v)w).$

Definition (P occurs in Q)

- $\bullet~P$ occurs in P
- If P occurs in M or in N, then P occurs in (MN)
- If P occurs in M or $P \equiv x$, then P occurs in $(\lambda x.M)$

Definition (scope)

In $\lambda x.M$, M is called the scope of λx .

Definition (free and bound occurrence of variables)

An occurrence of a variable x in a term P is called

- bound if it is in the scope of a λx in P
- bound and binding, iff it is the x in λx
- free otherwise

Definition (bound variable of P)

If x has at least one binding occurrence in P.

Definition (free variable of P)

If x has at least one free occurrence in P.

FV(P): The set of free variables of P.

Example

 $(\lambda y.yx(\lambda x.y(\lambda y.z)x))vw.$ (whiteboard)

Definition (close term or combinator) A term without free variables.

Definition (substitution [N/x]M)

The result of substituting N for every free occurrence of x in M, and changing bound variables to avoid clashes.

$$\begin{split} & [N/x]x \equiv N \\ & [N/x]a \equiv a & \text{for all atoms } a \not\equiv x \\ & [N/x](PQ) \equiv ([N/x]P \ [N/x]Q) \\ & [N/x](\lambda x.P) \equiv (\lambda x.P) \\ & [N/x](\lambda y.P) \equiv (\lambda y.P) & y \not\equiv x, x \notin FV(P) \\ & [N/x](\lambda y.P) \equiv \lambda y.[N/x]P & y \not\equiv x, x \in FV(P), y \notin FV(N) \\ & [N/x](\lambda y.P) \equiv \lambda z.[N/x][z/y]P & y \not\equiv x, x \in FV(P), y \in FV(N) \end{split}$$

where in the last equation, z is chosen to be a variable $\notin FV(NP)$.

Lambda Calculus

Example

 $[(\lambda y.vy)/x](y(\lambda v.xv)) \equiv y(\lambda z.(\lambda y.vy)z) \text{ (with } z \not\equiv v,y,x\text{)}.$

Definition (α -conversion or changed of bound variables) Replace $\lambda x.M$ by $\lambda y.[y/x]M$ ($y \notin FV(M)$).

Definition (α -congruence $(P \equiv_{\alpha} Q)$)

P is changed to Q by a finite (perhaps empty) series of α -conversions.

Beta Reduction

Definition (β -contraction ($P \triangleright_{1\beta} Q$))

Replace an occurrence of $(\lambda x.M)N$ (β -redex) in P by [N/x]M (contractum).

Example

Whiteboard.

Definition (β -reduction ($P \triangleright_{\beta} Q$))

P is changed to Q by a finite (perhaps empty) series of $\beta\text{-contractions}$ and $\alpha\text{-conversions}.$

Example

 $(\lambda x.(\lambda y.yx)z)v \triangleright_{\beta} zv.$

Beta Reduction

Definition (β -normal form)

A term which contains no β -redex.

 β -nf: The set of all β -normal forms.

Example

Whiteboard.

Beta Reduction

Corollary

If P has a β -normal form, it is unique modulo \equiv_{α} ; that is, if P has β -normal forms M and N, then $M \equiv_{\alpha} N$.

N

Beta Equality

Definition (β -equality or β -convertibility ($P =_{\beta} Q$))

Exist P_0, \ldots, P_n such that

- $P_0 \equiv P$
- $P_n \equiv Q$
- $(\forall i \leq n-1)(P_i \triangleright_{1\beta} P_{i+1} \lor P_{i+1} \triangleright_{1\beta} P_i \lor P_i \equiv_{\alpha} P_{i+1})$

Theorem (Church-Rosser theorem for $=_{\beta}$)

 $\frac{P =_{\beta} Q}{\exists T.P \triangleright_{\beta} T \land Q \triangleright_{\beta} T}$

Proof

Whiteboard.

Beta Equality

Corollary

If $P, Q \in \beta$ -nf and $P =_{\beta} Q$, then $P \equiv_{\alpha} Q$.

Corollary

The relation $=_{\beta}$ is non-trivial (not all terms are β -convertible to each other).

Proof

Whiteboard.

Combinatory Logic

Idea

To do logic and mathematics without use bound variables.

Combinators

Operators which manipulate expressions by cancellation, duplication, bracketing and permutation.

Example (informal)

The commutative law for addition

$$\forall xy.x + y = y + x,$$

can be written as

$$A = \mathsf{C} A,$$

where Axy represents x + y and C is a combinator with the property

$$\mathsf{C}\,f\,x\,y = f\,y\,x.$$

Example (some combinators (informal))

$$B f g x = f (g x)$$

$$B' f g x = g (f x)$$

$$I x = x$$

$$K x y = x$$

$$S f g x = f x (g x)$$

$$W f x = f x x$$

composition operator reversed composition operator identity operator projection operator stronger composition operator doubling operator

Definition (CL-terms)

$$\begin{split} v \in V \Rightarrow v \in \text{CL-terms} \\ c \in C \Rightarrow c \in \text{CL-terms} \\ X, Y \in \text{CL-terms} \Rightarrow (X \, Y) \in \text{CL-terms} \end{split}$$

where

V: Set of variables $C = \{\mathsf{I},\mathsf{K},\mathsf{S},\dots\}: \text{ Set of atomic constants}$

FV(X): The set of variables occurring in X.

Combinatory Logic

Definition (atoms, basic combinators and combinator)

An atom is a variable or atomic constant. The basic combinators are I, K and S. A combinator is a CL-term whose only atoms are basic combinators.

Definition (substitution [U/x]Y)

The result of substituting U for every occurrence of x in Y:

$$\begin{split} \left[U/x \right] x &\equiv U \\ \left[U/x \right] a &\equiv a \\ \left[U/x \right] (V W) &\equiv \left(\left[U/x \right] V \right) \left(\left[U/x \right] W \right) \end{split}$$

for all atoms $a \not\equiv x$

Definition (weak redex) The CL-terms I X, K X Y and S X Y Z.

Definition (weak contraction $(U \triangleright_{1w} V)$)

Replace an occurrence of a weak redex in U using:

 $\label{eq:constraint} \begin{array}{l} \mathsf{I} X \ \mathsf{by} \ X, \\ \mathsf{K} X Y \ \mathsf{by} \ X, \\ \mathsf{S} X Y Z \ \mathsf{by} \ X Z \ (Y Z). \end{array}$

Definition (weak reduction $(U \triangleright_w V)$)

The CL-term U is changed to V by a finite (perhaps empty) series of weak contractions.

Definition (weak normal form)

A CL-term which contains no weak redex.

Example

Let $B \equiv S(KS)K$. Then $BXYZ \triangleright_w X(YZ)$ (whiteboard).

Example

Let $B \equiv S(KS)K$. Then $BXYZ \triangleright_w X(YZ)$ (whiteboard).

Example

- Let $W\equiv S\,S\,(K\,I).$ Then
 - i) $\bigvee XY \triangleright_w XYY$ and
 - ii) WWW \triangleright_w WWW \triangleright_w ...

Theorem (substitution theorem for \triangleright_w)

$$X \triangleright_w Y \Rightarrow [U/x] X \triangleright_w [U/x] Y.$$

Theorem (Church-Rosser theorem for \triangleright_w)

$$\frac{P \triangleright_w M}{\exists T.M \triangleright_w T \land N \triangleright_w T}$$

Corollary (uniqueness of nf)

A CL-term can have at most one weak normal form.

Idea

To define a term [x].M such that

 $([x].M) N \triangleright_w [N/x] M.$

Definition (abstraction)

For every term M and every variable x,

$[x].M \equiv \mathbf{K} M$	$if \ x \not\in \mathrm{FV}(M)$	(1)
$[x].x \equiv \mathbf{I}$		(2)
$[x].U x \equiv U$	$if \ x \not\in \mathrm{FV}(U)$	(3)
$[x].UV \equiv S([x].U)([x].V)$	if neither (1) nor (3) applies	(4)

Example

 $[x].x y \equiv \mathsf{SI}(\mathsf{K}y)$ (whiteboard).

Theorem

For every term M and every variable $x,\ [x].M$ is always defined, does not contain x and $([x].M)\,x \vartriangleright_w M.$

Proof

Whiteboard.

Theorem

For every term M and every variable x,

 $([x].M) N \triangleright_w [N/x] M.$

Notation

$$[x_1, x_2, \dots, x_n].M \equiv [x_1].([x_2].(\dots ([x_n].M)\dots)).$$

Combinatory Logic

Example

 $[x, y].x y y \equiv SS(KI) \equiv W$ (whiteboard).

Weak Equality

Definition (weak equality or weak convertibility $(X =_w Y)$) Exist X_0, \ldots, X_n such that

- i) $X_0 \equiv X$
- ii) $X_n \equiv Y$
- iii) $(\forall i \leq n-1)(X_i \triangleright_{1w} X_{i+1} \lor X_{i+1} \triangleright_{1w} X_i)$

Theorem (Church-Rosser theorem for $=_w$)

$$\frac{X =_w Y}{\exists T.X \vartriangleright_w T \land Y \vartriangleright_w T}$$

Corollary

If X and Y are distinct weak normal forms, them $X \neq_w Y$; in particular $S \neq_w K$. Hence $=_w$ is non-trivial in the sense that not all terms are weakly equal.

Combinatory Logic

Weak Equality

About the 'weak' adjective

$$X =_{\beta} Y \Rightarrow \lambda x. X =_{\beta} \lambda x. Y,$$

but

$$X =_w Y \not\Rightarrow [x].X =_w [x].Y.$$

Example

Let $X \equiv S x y z$ and $Y \equiv x z (y z)$. Then $X =_w Y$, but $[x].X \neq_w [x].Y$, where

$$\begin{split} & [x].X \equiv \mathsf{S}\,(\mathsf{S}\,\mathsf{S}\,(\mathsf{K}\,y))\,(\mathsf{K}\,z), \\ & [x].Y \equiv \mathsf{S}\,(\mathsf{S}\,\mathsf{I}\,(\mathsf{K}\,z))\,(\mathsf{K}\,(y\,z)). \end{split}$$

The Power of λ

Introduction

Notation	Meaning for λ	Meaning for CL
term	λ -term	CL-term
$X \equiv Y$	$X \equiv_{\alpha} Y$	X is identical to Y
$X \triangleright_{\beta, w} Y$	$X \triangleright_{\beta} Y$	$X \triangleright_w Y$
$X =_{\beta, w} Y$	$X =_{\beta} Y$	$X =_w Y$
λx	λx	[x]

Idea

For every term \boldsymbol{X} there is a term \boldsymbol{P} such

$$XP =_{\beta, w} P.$$

The term P is called a fixed-point of X.

Theorem (fixed-point theorem)

There is a combinator \mathbf{Y} such that for every term X

1.
$$\mathbf{Y} X =_{\beta, w} X (\mathbf{Y} X).$$

2. $\mathbf{Y} X \triangleright_{\beta, w} X (\mathbf{Y} X).$

Theorem (fixed-point theorem)

There is a combinator \mathbf{Y} such that for every term X

1. $\mathbf{Y} X =_{\beta, w} X (\mathbf{Y} X).$ 2. $\mathbf{Y} X \triangleright_{\beta, w} X (\mathbf{Y} X).$

Proof.

 $\mathbf{Y}_{\text{Turing}} \equiv U U$, where $U \equiv \lambda u . \lambda x . x (u \, u \, x)$ (whiteboard).

Corollary

For every term Z and $n \ge 0$, the equation

$$x y_1 \dots y_n = Z$$

can be solved for $\boldsymbol{x}.$ That is, there is a term \boldsymbol{X} such that

$$X y_1 \dots y_n =_{\beta, w} [X/x] Z.$$

Corollary

For every term Z and $n \ge 0$, the equation

$$x y_1 \dots y_n = Z$$

can be solved for x. That is, there is a term X such that

$$X y_1 \dots y_n =_{\beta, w} [X/x] Z.$$

Proof. $X \equiv \mathbf{Y} (\lambda . x y_1 \dots y_n . Z)$ (whiteboard).

Definition (fixed-point combinator)

A fixed-point combinator is any combinator Y such $Y X =_{\beta, w} X (Y X)$, for all terms X.

Example

 $\mathbf{Y}_{\text{Curry-Rosenbloom}} \equiv \lambda x. V V$, where $V \equiv \lambda y. x (y y)$ is a fixed-point combinator. (Whiteboard)

Definition (η -redex)

In λ -calculus, a λ -term of form $\lambda x.M x$ with $x \notin FV(M)$ is called an η -redex and is said to η -contract to M.

Definition ($\beta\eta$ -normal forms)

In $\lambda\text{-calculus, a }\lambda\text{-term}$ which contains no $\beta\text{-redex}$ and no $\eta\text{-redex}.$

 $\beta\eta$ -nf: The set of all $\beta\eta$ -normal forms.

Example

The λ -term $\lambda u.\lambda x.u x$ is in β -nf but not in $\beta\eta$ -nf.

Definition (strong normal forms)

In $\operatorname{CL}\nolimits$, the class of strong nf is defined inductively by

- $\bullet\,$ All atoms other than I, K and S are in strong nf.
- If X_1, \ldots, X_n are in strong nf, and a is any atom $\neq I, K, S$, then $a X_1 \ldots X_n$ is in strong nf.
- If X is in strong nf, then so is [x].X.

Theorem (Böhms's theorem)

Let M and N be combinators, either in $\beta\eta$ -normal form (in λ) or in strong normal form (in CL). If $M \not\equiv N$, then there exists $n \geq 0$ and combinators L_1, \ldots, L_n such that

 $M L_1 \dots L_n x y \triangleright_{\beta, w} x,$ $N L_1 \dots L_n x y \triangleright_{\beta, w} y.$

Corollary

Let M and N be distinct combinators in $\beta\eta$ -normal form (in λ) or in strong normal form (in CL). If we add the equation M = N as a new axiom to the definition $=_{\beta}$ or $=_{w}$, then all terms become equal.

Proof

Whiteboard.

Idea

Proving that a given term has no normal form.

Definition (contraction $(X \triangleright_R Y)$)

 $(X \triangleright_R Y)$: R is an redex in X and Y is the result of contracting R in X.

Example

 $(\lambda x.(\lambda y.y\,x)\,z)\,v \triangleright_{(\lambda y.y\,x)\,z} (\lambda x.z\,x)\,v.$

Definition (reduction)

A reduction ρ is

$$CL: \qquad X_1 \triangleright_{R_1} X_2 \triangleright_{R_2} \cdots$$
$$\lambda: \qquad X_1 \triangleright_{R_1} Y_1 \equiv_{\alpha} X_2 \triangleright_{R_2} \cdots$$

Definition

Length of a reduction: The number of its contractions.

Terminus: The last term of a reduction of length finite.

A reduction ρ has maximal length iff either ρ is infinite or its terminus contains no redexes.

A redex is maximal iff it is not contained in any other redex.

A (maximal) redex is the left most maximal redex iff it is the leftmost of the maximal redexes.

Leftmost reduction: In every contraction, the contracted redex is the leftmost maximal redex.

Example

Let $X \equiv S(I(K x y))(I z)$.

Redexes: I(K x y), K x y and I z. Maximal redexes: I(K x y) and I z. Leftmost redex: I(K x y).

Example

Let $X \equiv S(I(K x y))(I z)$.

Redexes: I(K x y), K x y and Iz. Maximal redexes: I(K x y) and Iz. Leftmost redex: I(K x y).

Example

The leftmost reduction for X.

$$S(\underline{\mathsf{I}(\mathsf{K} x y)})(\mathsf{I} z) \triangleright_{1w} S(\underline{\mathsf{K} x y})(\mathsf{I} z) \\ \triangleright_{1w} Sx(\underline{\mathsf{I} z}) \\ \triangleright_{1w} Sx z$$

Theorem (leftmost reduction theorem)

If a term X has a normal form X^* , then the leftmost reduction of X is finite and ends at X^* .

Representing the Computable Functions

Representability

Definition

Let X, Y be λ -terms or CL-terms. Then

$$X^0 Y \equiv Y,$$

$$X^{n+1} Y \equiv X(X^n Y).$$

Definition (Church numerals)

For
$$\lambda$$
: $\overline{n} \equiv \lambda x y . x^n y$,
For CL: $\overline{n} \equiv (SB)^n (KI)$, where $B \equiv S(KS)K$.

Representability

Definition (representability)

Let φ be a partial function $\varphi : \mathbb{N}^m \to \mathbb{N}$. A term X represents φ iff

$$\varphi(n_1, \dots, n_m) = p \Rightarrow X \overline{n_1} \dots \overline{n_m} =_{\beta, w} \overline{p},$$

$$\varphi(n_1, \dots, n_m) \text{ does not exist} \Rightarrow X \overline{n_1} \dots \overline{n_m} \text{ has no nf.}$$

Representability

Example

The successor function $\sigma(n) = n + 1$ is represented by

In λ : $\overline{\sigma} \equiv \lambda uxy.x(uxy)$ (whiteboard) In CL: $\overline{\sigma} \equiv SB$

Definition (conditional operator)

 $\mathsf{D} \equiv \lambda xyz.z(\mathsf{K}y)x$

For all X, Y

 $\begin{array}{l} \mathsf{D}XY\overline{0} =_{\beta,w} X \quad (\mathsf{whiteboard}) \\ \mathsf{D}XY\overline{k+1} =_{\beta,w} Y \quad (\mathsf{whiteboard}) \end{array}$

 $\mathsf{D}XY\overline{n}$ is called if n = 0 then X, else Y.

Representing the Computable Functions

Recursion Using Fixed-Points

Example (informal)

(From: Peyton Jones [1987])

 $\begin{aligned} & \mathsf{fac} \equiv \lambda n. \mathsf{if} \ n = 0 \ \mathsf{then} \ 1 \ \mathsf{else} \ n \ast \mathsf{fac} \ (n-1) \\ & \mathsf{fac} \equiv \lambda n. (\dots \mathsf{fac} \dots) \\ & \mathsf{fac} \equiv (\lambda f n. (\dots f \dots)) \mathsf{fac} \end{aligned}$

 $h \equiv \lambda f n.(\dots f \dots) \quad \text{(not recursive!)}$ fac $\equiv h$ fac (fac is a fixed-point of h!)

 $fac \equiv Yh$

Recursion Using Fixed-Points

Example (cont.)

fac $1 \equiv Yh 1$ $=_{\beta,w} h(\mathbf{Y}h) 1$ $\equiv (\lambda f n. (\dots f \dots)) (\mathbf{Y} h) 1$ $\triangleright_{\beta,w}$ if 1=0 then 1 else $1*(\forall h \ 0)$ $\triangleright_{\beta,w} 1 * (\mathsf{Y}h \ 0)$ $=_{\beta,w} 1 * (h(Yh) 0)$ $\equiv 1 * ((\lambda f n. (\dots f \dots))(\mathbf{Y} h) 0)$ $\triangleright_{\beta w} 1 * (\text{if } 0 = 0 \text{ then } 1 \text{ else } 1 * (\Upsilon h (-1)))$ $\triangleright_{\beta,w} 1 * 1$ $\triangleright_{\beta,w} 1$

Representing the Computable Functions

Theorem (representation of Turing-computable functions)

In λ or ${\rm CL}$ every Turing-computable function can be represented by a combinator.

The Formal Theories $\lambda\beta$ and CLw

Definition ($\lambda\beta$, formal theory of β -equality) Formulas: M = N, where $M, N \in \lambda$ -terms.

Axiom-schemes:

$$\begin{aligned} &(\alpha) \quad \lambda x.M &= \lambda y.[y/x]M \text{ if } y \in \mathrm{FV}(M), \\ &(\beta) \quad (\lambda x.M)N = [N/x]M, \\ &(\rho) \quad M &= M. \end{aligned}$$

Rules of inference:

$$(\mu) \frac{M = M'}{NM = NM'} \qquad (\xi) \frac{M = M'}{\lambda x \cdot M = \lambda x \cdot M'} \qquad (\tau) \frac{M = N}{M = P} \qquad (\sigma) \frac{M = N}{N = M}$$

The Formal Theories $\lambda\beta$ and CLw

Definition ($\lambda\beta$, formal theory of β -equality)

Deductions: $\lambda\beta, A_1, \ldots, A_n \vdash B$ (There is a deduction of B from the assumptions A_1, \ldots, A_n in $\lambda\beta$).

Theorems: $\lambda\beta \vdash B$ (The formula *B* is probable in $\lambda\beta$).

Example

Let \boldsymbol{M} and \boldsymbol{N} be two closed terms

$$\frac{(\lambda x.(\lambda y.x))M = [M/x]\lambda y.x \equiv \lambda y.M}{(\lambda x.(\lambda y.x))MN = (\lambda y.M)N} \binom{\nu}{(\lambda y.M)N = [N/y]M \equiv M} (\tau)$$
$$\frac{(\lambda x.(\lambda y.x))MN = M}{(\lambda x.(\lambda y.x))MN = M}$$

That is to say, $\lambda\beta \vdash (\lambda xy.x)MN = M$.

Remark

 $\lambda\beta$ is a equational theory and it is a logic-free theory (there are not logical connectives or quantifiers in its formulae).

Definition ($\lambda\beta$, formal theory of β -reduction)

(Similar to the formal theory of β -equality, but:

- **1**. Formulas: $M \triangleright_{\beta} N$.
- 2. To change '=' by ' \triangleright_{β} .
- 3. Remove the rule (σ) .)

Formulas: $M \triangleright_{\beta} N$, where $M, N \in \lambda$ -terms.

Axiom-schemes:

$$\begin{array}{ll} (\alpha) & \lambda x.M & \triangleright_{\beta} \lambda y.[y/x]M \text{ if } y \in \mathrm{FV}(M), \\ (\beta) & (\lambda x.M)N \triangleright_{\beta} [N/x]M, \\ (\rho) & M & \triangleright_{\beta} M. \end{array}$$

Definition ($\lambda\beta$, formal theory of β -reduction) Rules of inference:

$$(\mu) \frac{M \triangleright_{\beta} M'}{NM \triangleright_{\beta} NM'} \qquad (\xi) \frac{M \triangleright_{\beta} M'}{\lambda x.M \triangleright_{\beta} \lambda x.M'} \\ (\nu) \frac{M \triangleright_{\beta} M'}{MN \triangleright_{\beta} M'N} \qquad (\tau) \frac{M \triangleright_{\beta} N}{M \triangleright_{\beta} P}$$

Theorem

$$M \triangleright_{\beta} N \iff \lambda\beta \vdash M \triangleright_{\beta} N,$$
$$M =_{\beta} N \iff \lambda\beta \vdash M = N.$$

Definition (CLw, formal theory of weak equality) Formulas: M = N, where $M, N \in$ CL-terms Axiom-schemes:

(I)
$$IX = X$$
,
(K) $KXY = X$,
(S) $SXYZ = XZ(YZ)$,
(ρ) $X = X$.

Rules of inference: The same rules than the theory $\lambda\beta$ except the rule (ξ) . Deductions: CLw, $A_1, \ldots, A_n \vdash B$.

Theorems: $CLw \vdash B$.

Definition (CLw, formal theory of weak reduction) Similar to the formal theory of β -reduction.

Theorem

 $M \triangleright_w N \iff \operatorname{CLw} \vdash M \triangleright_w N,$ $M =_w N \iff \operatorname{CLw} \vdash M = N.$

- $\mathcal{T}{:} \ Theory$
- $\mathcal{F}:$ Formulas of \mathcal{T}

Rule of inference $\mathcal{R}(\varphi)$: Given by a partial function $\varphi : \mathcal{F}^n \to \mathcal{F}$ Instance of $\mathcal{R}(\varphi)$:

$$\frac{A_1,\ldots,A_n}{B}$$

Notation

- \mathcal{T},\mathcal{T}' : Theories with the same formulas
- \mathcal{R} : Inference rule
- C: Formula

Definition (derivable rules)

 \mathcal{R} is derivable in \mathcal{T} iff for each instance of \mathcal{R} (with premises A_1, \ldots, A_n and conclusion B)

 $\mathcal{T}, A_1, \ldots, A_n \vdash B.$

Definition (admissible rules)

 \mathcal{R} is admissible in \mathcal{T} iff adding \mathcal{R} to \mathcal{T} as a new rule will not increase the set of theorems of \mathcal{T} .

Definition (derivable and admissible formula)

 $\mathcal{T} \vdash C.$

Theorem

If \mathcal{R} is derivable in \mathcal{T} , then \mathcal{R} is admissible in \mathcal{T} . The implication in the opposite direction does not hold in general.

Definition (theories theorem-equivalent)

 \mathcal{T} and \mathcal{T}' are theorem-equivalent iff every rule and axiom of \mathcal{T} is admissible in \mathcal{T}' and vice-versa.

Definition (theories rule-equivalent)

 ${\cal T}$ and ${\cal T}'$ are rule-equivalent iff every rule and axiom of ${\cal T}$ is derivable in ${\cal T}'$ and vice-versa.

Definition (equality relation determined by a theory)

 \mathcal{T} : Formal theory with some equations X = Y.

The equality relation determined by \mathcal{T} is $=_{\mathcal{T}}$ is:

$$X =_{\mathcal{T}} Y \Longleftrightarrow \mathcal{T} \vdash X = Y.$$

Extensionality in Lambda Calculus

• For functions:
$$\forall x \ (f(x) = g(x)) \Rightarrow f = g.$$

• For programs: It two programs compute the same function, are they the same program?

Theorem

The theory $\lambda\beta$ is not extensional.

Proof.

Let $F \equiv y$ and $G \equiv \lambda x.yx$. Then for all X

$$\lambda\beta \vdash FX = GX,$$

but

$$\lambda\beta \not\vdash F = G.$$

Extensionality in Lambda Calculus

Rule and axiom-scheme to express extensionality

$$\begin{aligned} &(\zeta) \quad \frac{Mx = Nx}{M = N} & \text{if } x \notin \mathrm{FV}(MN), \\ &(\eta) \quad \lambda x.Mx = M & \text{if } x \notin \mathrm{FV}(M). \end{aligned}$$

Definition (theories $\lambda\beta\zeta$ and $\lambda\beta\eta$)

 $\lambda\beta\zeta :\lambda\beta + (\zeta),$ $\lambda\beta\eta :\lambda\beta + (\eta).$

Theorem

The theories $\lambda\beta\zeta$ and $\lambda\beta\eta$ are rule-equivalents.

Proof.

1. (ζ) is derivable in $\lambda\beta\eta$, i.e. $\lambda\beta\eta, Mx = Nx \vdash M = N$ (with $x \notin FV(MN)$). (Whiteboard).

2.
$$(\eta)$$
 is derivable in $\lambda\beta\zeta$, i.e.
 $\lambda\beta\zeta \vdash \lambda x.Mx = M$ (with $x \notin FV(M)$). (Whiteboard).

Definition (extensional equality in λ)

$$M =_{\lambda \mathsf{ext}} N \Longleftrightarrow \lambda \beta \zeta \vdash M = N.$$

Extensionality in Lambda Calculus

Definition (η -redex and contractum)

An η -redex is any λ -term $\lambda x.Mx$ with $x \notin FV(M)$. Its contractum is M.

Definition (η -contraction ($P \triangleright_{1\eta} Q$))

Replace an occurrence of a η -redex in P by its contractum.

Definition (η -reduction ($P \triangleright_{\eta} Q$))

P is changed to Q by a finite (perhaps empty) series of η -contractions and α -conversions.

Definition ($\beta\eta$ -redex)

An $\beta\eta$ -redex is a β -redex or an η -redex.

Definition ($\beta\eta$ -contraction ($P \triangleright_{1\beta\eta} Q$))

Replace an occurrence of a $\beta\eta$ -redex in P by its contractum.

Definition ($\beta\eta$ -reduction ($P \triangleright_{\beta\eta} Q$))

P is changed to Q by a finite (perhaps empty) series of $\beta\eta$ -contractions and α -conversions.

Definition ($\beta\eta$ -normal forms)

A $\lambda\text{-term}$ which contains no $\beta\eta\text{-redex}.$

Theorem (Church-Rosser theorem for $\triangleright_{\beta\eta}$)

$$\frac{P \triangleright_{\beta\eta} M}{\exists T.M \triangleright_{\beta\eta} T \land N \triangleright_{\beta} T}$$

Theorem (relation between $\triangleright_{\beta\eta}$ and $=_{\lambda ext}$)

 $P =_{\lambda \text{ext}} Q$ iff Q can be obtained from P by a finite (perhaps empty) series of $\beta\eta$ -contractions and reversed $\beta\eta$ -contractions and α -conversions.

Theorem (Church-Rosser theorem for $=_{\lambda ext}$)

$$\frac{P =_{\lambda \text{ext}} Q}{\exists T.P \triangleright_{\beta \eta} T \land Q \triangleright_{\beta \eta} T}$$

Corollary

The relation $=_{\lambda \text{ext}}$ is non-trivial (not all terms are $\beta\eta$ -convertible to each other).

Extensionality in Combinatory Logic

Theorem

The theory CLw is not extensional.

Proof.

Let $X \equiv S(\mathsf{K}u)$ and $Y \equiv u$, then for all M

 $\operatorname{CLw} \vdash XM = YM,$

but

 $\operatorname{CLw} \not\vdash X = Y.$

Rule and axiom-scheme to express extensionality

$$(\zeta) \quad \frac{Xx = Yx}{X = Y} \quad \text{if } x \notin FV(XY),$$

$$(\xi) \quad \frac{X = Y}{[x].X = [x].Y}$$
$$(\eta) \quad [x].Ux = U \qquad \text{if } x \notin FV(U).$$

Definition (theories $CL\zeta$ and $CL\xi$)

 $\operatorname{CL}\zeta : \operatorname{CL} + (\zeta),$ $\operatorname{CL}\xi : \operatorname{CL} + (\xi).$

Extensionality in Combinatory Logic

Exercise

Probe that neither (ζ) nor (ξ) are admissible in CLw (whiteboard).

Definition (extensional equality in CL)

$$X =_{C\mathsf{ext}} Y \Longleftrightarrow \mathrm{CL}\zeta \vdash X = Y.$$

Example

 $SK =_{Cext} KI$. (Whiteboard).

Theorem

The theory $CL\xi$ determines the same equality-relation $=_{Cext}$ as $CL\zeta$ does.

Proof.

1. (ζ) is derivable in $CL\xi$, i.e.

 $CL\xi, Xx = Yx \vdash X = Y$ (with $x \notin FV(XY)$). (Whiteboard).

2. (ξ) is derivable in $\mathrm{CL}\zeta$, i.e.

 $CL\zeta, X = Y \vdash [x].X = [x].Y.$ (Whiteboard).

Extensionality in Combinatory Logic

91/122

$$\begin{split} S(K(S(KS)))(S(KS)(S(KS))) &= \\ S(S(KS)(S(KK)(S(KS)(S(K(S(KS)))S))))(KS) \quad (E-ax 5) \end{split}$$

S(KI) = I (E-ax 3) S(KS)(S(KK)) = K (E-ax 4)

$$\begin{split} S(S(KS)(S(KK)(S(KS)K))) &= S(KK) & (E-ax 1) \\ S(S(KS)K)(KI) &= I & (E-ax 2) \end{split}$$

 $CLext_{ax} : CLw + E-ax 1 + \cdots + E-ax 5$, where

Axioms for Extensionality in CL

Definition (formal theory $CLext_{ax}$)

Axioms for Extensionality in CL

Definition (other version of E-ax 1,..., E-ax 5)

$$\begin{split} & [x,y,v].\,(\mathsf{K}xv)(\mathsf{K}yv) = [x,y,v].xy & (\mathsf{E-ax}\ 1) \\ & [x,v].\,(\mathsf{K}xv)(\mathsf{I}v) = [x,v].xv & (\mathsf{E-ax}\ 2) \\ & [x,v].\,\mathsf{I}(xv) = [x,v].xv & (\mathsf{E-ax}\ 3) \\ & [x,y,v].\,\mathsf{K}(xv)(yv) = [x,y,v].xv & (\mathsf{E-ax}\ 4) \\ & [x,y,z,v].\,\mathsf{S}(xv)(yv)(zv) = [x,y,z,v].xv(zv)(yv(zv)) & (\mathsf{E-ax}\ 5) \end{split}$$

Motivation

We are looking axioms which will make (ξ) admissible in $CLext_{ax}$:

$$\operatorname{CLext}_{\operatorname{ax}} \vdash X = Y \Longrightarrow \operatorname{CLext}_{\operatorname{ax}} \vdash [x].X = [x].Y.$$

Extensionality in Combinatory Logic

Axioms for Extensionality in CL

Theorem

The theory ${\rm CLext}_{ax}$ is theorem-equivalent to ${\rm CL}\xi.$

Strong Reduction

Definition (strong reduction \succ)

The formal theory of strong reduction:

Formulas: $X \succ Y$, where $X, Y \in CL$ -terms

Axiom-schemes and rules: The same than CLw changed '=' by ' \succ ' and the rule (σ) omitted. New rule added:

$$(\xi) \ \underline{X \succ Y} \\ \hline [x].X \succ [x].Y$$

Example $SK \succ KI$. (Whiteboard).

Strong Reduction

Theorem (Church-Rosser theorem for \succ)

$$\frac{U \succ X \quad U \succ Y}{\exists Z.X \succ Z \land Z \succ Y}$$

Definition (strong irreducibility)

 \boldsymbol{X} is called strongly irreducible iff, for all \boldsymbol{Y}

$$X \succ Y \Longrightarrow Y \equiv X.$$

Theorem

The strongly irreducible CL-terms are exactly the terms in the strong nf class.

Models of CL

Applicative Structures

Definition (valuation)

Let D a set. A valuation is a mapping $\rho : \text{Vars} \to D$.

Notation:
$$[d/x]
ho = egin{cases}
ho(y), & ext{if } y
eq x; \ d, & ext{otherwise.} \end{cases}$$

Definition (applicative structure)

An applicative structure is a structure $\langle D, \cdot \rangle$ where

1. $|D| \ge 2$. 2. $\cdot: D^2 \to D$.

Definition (combinatory algebra)

A combinatory algebra is a structure (convention: association to the left for \cdot) $\mathbb{D} = \langle D, \cdot \rangle$ where

1. $|D| \ge 2$.

2 $. \ \cdot : D^2 \to D.$

3. There are two elements $k, s \in D$ such that for all $a, b, c \in D$,

$$k \cdot a \cdot b = a,$$

$$s \cdot a \cdot b \cdot c = a \cdot c \cdot (b \cdot c).$$
(6)

Definition (model of CLw)

A model of CLw is a structure $\langle D, \cdot, i, k, s \rangle$ where

- 1. $\langle D, \cdot \rangle$ is a combinatory algebra.
- 2. The elements k and s satisfy (5) and (6).
- 3. The element *i* satisfies $i = s \cdot k \cdot k$.

Definition (model of $CLext_{ax}$)

A model of $CLext_{ax}$ is a model $\langle D, \cdot, i, k, s \rangle$ of CLw that satisfies the extensionality axioms E-ax 1, ..., E-ax 5.

Definition (interpretation of a term)

Let $\mathbb{D} = \langle D, \cdot, i, k, s \rangle$ where $\langle D, \cdot \rangle$ is a combinatory algebra and ρ a valuation. The interpretation of X in D under ρ , denoted $[\![X]\!]_{\rho}^{\mathbb{D}}$, is defined by

$$\begin{split} \llbracket X \rrbracket_{\rho}^{\mathbb{D}} : \mathrm{CL}\text{-term} &\to D \\ \llbracket x \rrbracket_{\rho}^{\mathbb{D}} &= \rho(x), \\ \llbracket I \rrbracket_{\rho}^{\mathbb{D}} &= i, \\ \llbracket \mathbf{K} \rrbracket_{\rho}^{\mathbb{D}} &= k, \\ \llbracket \mathbf{S} \rrbracket_{\rho}^{\mathbb{D}} &= s, \\ \llbracket XY \rrbracket_{\rho}^{\mathbb{D}} &= \llbracket X \rrbracket_{\rho}^{\mathbb{D}} \cdot \llbracket Y \rrbracket_{\rho}^{\mathbb{D}}. \end{split}$$

Definition (satisfaction)

$$\mathbb{D}, \rho \models X = Y \iff \llbracket X \rrbracket_{\rho}^{\mathbb{D}} = \llbracket Y \rrbracket_{\rho}^{\mathbb{D}},$$
$$\mathbb{D} \models X = Y \iff (\forall \rho)(\mathbb{D}, \rho \models X = Y).$$

Example (term model)

Let $\mathcal{T} \in \{ CLw, CLext_{ax} \}$. For each CL-term X,

$$[X] = \{Y : \mathcal{T} \vdash X = Y\}.$$

The $\mathbb{TM}(\mathcal{T})$ (the term model of $\mathcal{T})$ is $\langle D,\cdot,i,k,s\rangle$ where

$$D = \{ [X] : X \text{ is a CL-term} \},$$
$$[X] \cdot [Y] = [XY],$$
$$i = [I],$$
$$k = [K],$$
$$s = [S].$$

Example (cont.)

In this model, interpretation is the same as substitution

$$[\![X]\!]_{\rho} = [[Y_1/x_1, \dots, Y_n/x_n]X],$$

where

$$FV(X) = \{x_1, \dots, x_n\},\$$

$$\forall x_i \in FV(X).\rho(x_i) = Y_i.$$

Theorem (submodel theorem)

Let $\mathcal{T} \in \{\text{CLw}, \text{CLext}_{ax}\}$. If $\langle D, \cdot, i, k, s \rangle$ is a model of \mathcal{T} and D' is a subset of D which contains i, k and s and is closed under \cdot , then $\langle D', \cdot, i, k, s \rangle$ is a model of \mathcal{T} .

Definition (interiors)

Let $\mathcal{T} \in \{\mathrm{CLw}, \mathrm{CLext}_{\mathrm{ax}}\}$ and $\mathbb{D} = \langle D, \cdot, i, k, s \rangle$ a model of \mathcal{T} . The interior of \mathbb{D} is

 $\mathbb{D}^{\circ} = \{ \llbracket X \rrbracket : X \text{ closed} \}.$

Theorem (interiors)

Let $\mathcal{T} \in \{ CLw, CLext_{ax} \}$. The interior of a model of \mathcal{T} is also a model of \mathcal{T} .

Models of Lambda Calculus

The Definition of Lambda Model

Definition (λ -model)

A $\lambda\text{-model}$ is a triple $\mathbb{D}=\langle D,\cdot,[\![~]\!]\rangle$ where

- 1. $\langle D, \cdot \rangle$ is an applicative structure.
- 2. $[\![\,]\!]:\lambda\text{-terms}\to D$ is a mapping such that for each valuation ρ

$$\begin{split} \llbracket x \rrbracket_{\rho} &= \rho(x), \\ \llbracket PQ \rrbracket_{\rho} &= \llbracket P \rrbracket_{\rho}^{\mathbb{D}} \cdot \llbracket Q \rrbracket_{\rho}. \\ \llbracket \lambda x.P \rrbracket_{\rho} \cdot d &= \llbracket P \rrbracket_{[d/x]\rho}, & \text{for all } d \in D, \\ \llbracket M \rrbracket_{\rho} &= \llbracket M \rrbracket_{\sigma} & \text{if } \forall x \in \mathrm{FV}M.\rho(x) = \sigma(x), \\ \llbracket \lambda x.P \rrbracket_{\rho} &= \llbracket \lambda y.[y/x]P \rrbracket_{\rho} & \text{if } y \notin \mathrm{FV}(M), \end{split}$$

If
$$(\forall d \in D)(\llbracket P \rrbracket_{\lfloor d/x \rfloor \rho} = \llbracket Q \rrbracket_{\lfloor d/x \rfloor \rho})$$
 then $\llbracket \lambda x.P \rrbracket_{\rho} = \llbracket \lambda x.Q \rrbracket_{\rho}$.

The Definition of Lambda Model

Theorem

Every λ -model satisfies all the provable equations if the formal theory $\lambda\beta$.

The Definition of Lambda Model

Definition (models of $\lambda\beta\eta$)

A model of $\lambda\beta\eta$ is a λ -model that satisfies the equation $\lambda x.Mx = M$ for all terms M and all $x \notin FV(M)$.

The Definition of Lambda Model

Example (term models)

Let $\mathcal{T} \in \{\lambda\beta, \lambda\beta\eta\}$. For each λ -term M,

 $[M] = \{N : \mathcal{T} \vdash M = N\}.$

The $\mathbb{TM}(\mathcal{T})$ (the term model of $\mathcal{T})$ is $\langle D,\cdot,[\![\,]\!]\rangle$ where

$$D = \{[M] : M \text{ is a } \lambda\text{-term}\},$$

$$[P] \cdot [Q] = [PQ],$$

$$[[M]]_{\rho} = [[N_1/x_1, \dots, N_n/x_n]M],$$

where

$$FV(M) = \{x_1, \dots, x_n\},\$$

$$\forall x_i \in FV(M).\rho(x_i) = N_i.$$

Models of Lambda Calculus

The problem

"In the λ -calculus the objects serve both as arguments and as functions to be applied to these arguments. Therefore one would like that a semantics for λ -calculus consist of a domain D such that its function space D^D is isormorphic to D. By Cantor's theorem this is impossible." [Barendregt (1981) 2004, p. 86]

Solution

Dana Scott

- D_{∞} : complete partial order
- $[D_{\infty} \rightarrow D_{\infty}]$: continuous functions (under Scott's topology)
- $D_{\infty} \cong [D_{\infty} \to D_{\infty}].$

Definition (partially ordered sets (poset))

A poset is a structure $\langle D, \sqsubseteq \rangle$ where D is a set and $\sqsubseteq: D^2 \to D$ is transitive, anti-symmetric, and reflexive.

Let $\langle D, \sqsubseteq \rangle$ a poset and let $X \subseteq D$.

Definition (upper bound)

An upper bound (u.b) of X is any $b \in D$ such

 $\forall a \in X.a \sqsubseteq b.$

Definition (least upper bound (l.u.b.) (or supremum)) The l.u.b. of X called $\bigsqcup X$, it is an upper bound b of X such

 $\forall c \in D.c \text{ is a u.b. of } X \Longrightarrow b \sqsubseteq c.$

Definition (bottom)

D has an element called bottom (denoted $\perp)$ iff

 $\forall x \in D.\bot \sqsubseteq x.$

Definition (directed sets)

Let $\langle D, \sqsubseteq \rangle$ a poset. A subset $X \subseteq D$ is said to be directed iff $X \neq \emptyset$ and

 $\forall a,b \in X. \exists c \in X. a \sqsubseteq c \land b \sqsubseteq c.$

Definition (complete partial orders, c.p.o.s)

A c.p.o. is a poset $\langle D, \sqsubseteq \rangle$ such that

- 1. D has a \perp .
- 2. Every direct subset $X \subseteq D$ has a l.u.b.

Definition (set \mathbb{N}^+)

$$\mathbb{N}^+ = \mathbb{N} \cup \{\bot\} \quad (\bot \notin \mathbb{N}),$$
$$\forall a, b \in \mathbb{N}^+ . a \sqsubseteq b \iff (a = \bot \land b \in \mathbb{N}) \lor a = b.$$

Theorem

 $\langle \mathbb{N}^+, \sqsubseteq \rangle$ is a c.p.o.

Models of Lambda Calculus

- The element ⊥ represents an undefined value (partial functions).
- a ⊑ b represents that b "is more defined" than a or both are equals (semantic approximation order).

Let $\langle D, \sqsubseteq \rangle$ and $\langle D', \sqsubseteq' \rangle$ be c.p.o.s and φ a function $\varphi : D \to D'$.

Definition (monotonicity)

The function φ is monotonic iff

$$a \sqsubseteq b \Longrightarrow \varphi(a) \sqsubseteq' \varphi(b).$$

Example

Let $\varphi : \mathbb{N}^+ \to \mathbb{N}^+$ be a monotonic function. If $\varphi(\perp) = 1$ then φ is a constant function, i.e. $\forall n \in \mathbb{N}^+.\varphi(n) = 1$.

Definition (continuity)

The function φ is continua iff, for all directed $X\subseteq D$

 $\varphi \Bigl(\bigsqcup X \Bigr) = \bigsqcup (\varphi(X)),$

where

$$\varphi(X) = \{\varphi(a) : a \in X\}.$$

Definition (function-set $[D \rightarrow D']$)

 $[D \to D']$: For c.p.o.s $\langle D, \sqsubseteq \rangle$ and $\langle D', \sqsubseteq' \rangle$, the set of all continuous functions. For $\varphi, \psi \in [D \to D']$, we define

$$\varphi \sqsubseteq \psi \Longleftrightarrow \forall d \in D.\varphi(d) \sqsubseteq' \psi(d).$$

Theorem

The function $\forall d \in D. \perp(d) = \perp'$ is the bottom of $[D \to D']$.

Theorem

 $[D \rightarrow D']$ is a c.p.o.

Definition (sequence D_0, D_1, \dots)

$$D_0 = \mathbb{N}^+,$$
$$D_{n+1} = [D_n \to D_n].$$

Theorem

Every D_n is a c.p.o.

Example

From: http://en.wikibooks.org/wiki/Haskell/Denotational_semantics
The factorial function

$$f(n) =$$
if $n == 0$ then 1else $n \cdot f(n-1)$

Approximations of the factorial function

٠

$$f_{k+1}(n) =$$
if $n == 0$ then 1 else $n \cdot f_k(n-1)$

Example (cont.)

$$f_{0}(n) = \bot , \qquad f_{1}(n) = \begin{cases} 1 & \text{if } n \text{ is } 0 \\ \bot & \text{else} \end{cases} ,$$

$$f_{2}(n) = \begin{cases} 1 & \text{if } n \text{ is } 0 \\ 1 & \text{if } n \text{ is } 1 \\ \bot & \text{else} \end{cases} , f_{3}(n) = \begin{cases} 1 & \text{if } n \text{ is } 0 \\ 1 & \text{if } n \text{ is } 1 \\ 2 & \text{if } n \text{ is } 2 \\ \bot & \text{else} \end{cases} , \dots$$

Then, $\perp = f_0 \sqsubseteq f_1 \sqsubseteq f_2 \sqsubseteq \ldots$ The idea is $\forall n. \mid |(f_0(n) \sqsubseteq f_1(n) \sqsubseteq f_2(n) \sqsubseteq \ldots) = f(n).$

Models of Lambda Calculus

About the λ -model $\langle D_{\infty}, \cdot, \llbracket \rrbracket \rangle$

- D_{∞} cannot be a set of functions (no function can be applied to itself).
- Scott's idea:
 - ${\, \bullet \, }$ Members of D_∞ are infinite sequences of functions

$$\varphi = \langle \varphi_0, \varphi_1, \varphi_2, \ldots \rangle$$
, where $\varphi_n \in D_n$.

Application

$$\varphi \cdot \psi = \langle \varphi_1(\psi_0), \varphi_2(\psi_1), \ldots \rangle$$

Self-application

$$\varphi \cdot \varphi = \langle \varphi_1(\varphi_0), \varphi_2(\varphi_1), \ldots \rangle$$

References

Barendregt, H. P. [1981] (2004). The Lambda Calculus. Its Syntax and Semantics. Revised edition, 6th impression. Vol. 103. Studies in Logic and the Foundations of Mathematics. Elsevier (cit. on pp. 3, 110).

