Lambda Calculus and Combinatory Logic

Andrés Sicard-Ramirez

Universidad EAFIT

Semester 2009-2



Introduction



References

@ Textbook: Hindley, J. Roger and Seldin, Jonathan P. [2008]. Lambda-Calculus and
Combinators. An Introduction. Cambridge University Press.

@ Barendregt, Henk and Barendsen, Erik [2000]. Introduction to Lambda Calculus.
Revisited edition.

e Barendregt, H. P. [1981] [2004]. The Lambda Calculus. Its Syntax and Semantics.
Revised edition, 6th impression. Vol. 103. Studies in Logic and the Foundations of
Mathematics. Elsevier.

3/122



Lambda Calculus and Combinatory Logic

@ "“Two systems of logic which can also serve as abstract programming languages.”
[Hindley and Seldin 2008, p. ix]

@ The goal was to use them in the foundation of mathematics.
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Lambda Calculus

Invented by Alonzo Church (around 1930s).

/]

@ The goal was to use it in the foundation of mathematics. Intended for studying functions
and recursion.

o Computability model.
@ Model of untyped functional programming languages.

Introduction
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What is the Combinatory Logic?

Invented by Moses Schonfinkel (1920) and
Haskell Curry (1927).

@ Intended for clarify the role of quantified variables.
@ ldea: To do logic and mathematics without use bound variables.

@ Combinators: Operators which manipulate expressions by cancellation, duplication,
bracketing and permutation.
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Lambda Calculus



Introduction

@ A-calculus is a collection of several formal systems
@ )\-notation

o Anonymous functions
o Currying

Definition (A-terms)
veV =wve \terms
ce C = ce Mterms

M, N € M\terms = (M N) € \-terms
M € Mterms,z € V = (Az.M) € A-terms

where V/C' is a set of variables/constants.

(atom)
(atom)
(application)
(

abstraction)
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Introduction

Conventions and syntactic sugar

@ Application associates to the left
MN1N2 e Nk means (((MNl)NQ)Nk)

@ Application has higher precedence
Az.PQ means (Az.(PQ))

® A\z1x2...xn. M means (Azi.(Aza.(... Azp.M)...)))
@ M = N means the syntactic identity

Example

(Aryz.zz(yz))uvw = (((Azx.(Ay.(Az.((x2)(y2)))))u)v)w).
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Term-Structure and Substitution

Definition (P occurs in Q)
e P occursin P
@ If P occurs in M orin N, then P occurs in (MN)
e If P occursin M or P = x, then P occurs in (Ax.M)

Definition (scope)
In Ax.M, M is called the scope of Ax.

Lambda Calculus
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Term-Structure and Substitution

Definition (free and bound occurrence of variables)
An occurrence of a variable x in a term P is called
@ bound if it is in the scope of a Az in P
@ bound and binding, iff it is the x in Az

o free otherwise

Definition (bound variable of P)

If = has at least one binding occurrence in P.

Definition (free variable of P)

If  has at least one free occurrence in P.

FV(P): The set of free variables of P.

Lambda Calculus
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Term-Structure and Substitution

Example
(My.yz(Ax.y(Ay.z)x))vw. (whiteboard)

Definition (close term or combinator)

A term without free variables.
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Term-Structure and Substitution

Definition (substitution [N/z]M)

The result of substituting NV for every free occurrence of z in M, and changing bound variables
to avoid clashes.

[N/z]z = N
[N/z]a = a for all atoms a # x
N/2)(PQ) = (IN/2]P [N/2]Q)
[N/z](Az.P) = (Az.P)
IN/2)(A\y.P) = (y.P) y# o, ¢ FV(P)
[N/x](\y.P) = A\y.[N/z|P y#z,x € FV(P),y € FV(N)
[N/a](\.P) = A=.[N/a][2/4]P y# 2,3 € FV(P),y € FV(N)

where in the last equation, z is chosen to be a variable ¢ FV(NP).
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Term-Structure and Substitution

Example
[(Ay.vy)/z](y(Av.av)) = y(Az.(A\y.vy)z) (with 2 Z v, y, x).
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Term-Structure and Substitution

Definition (a-conversion or changed of bound variables)
Replace Axz.M by Ay.[y/x]M (y & FV(M)).

Definition (a-congruence (P =, Q))

P is changed to @ by a finite (perhaps empty) series of a-conversions.

Lambda Calculus 15/122



Beta Reduction

Definition (S-contraction (P >15 Q))
Replace an occurrence of (Ax.M)N ([-redex) in P by [N/x]M (contractum).

Example
Whiteboard.

Definition (S-reduction (P >3 Q))

P is changed to @ by a finite (perhaps empty) series of S-contractions and a-conversions.

Example

(Az.(A\y.yz)z)v g 2v.

Lambda Calculus
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Beta Reduction

Definition (-normal form)

A term which contains no [-redex.

B-nf: The set of all S-normal forms.

Example
Whiteboard.

Lambda Calculus
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Beta Reduction

Theorem (Church-Rosser theorem for >3)

PI>BM PDBN
HT.MDBT/\NDﬁT

Corollary

If P has a 8-normal form, it is unique modulo =,; that is, if P has 8-normal forms M and N,

then M =, N.
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Beta Equality

Definition (S-equality or B-convertibility (P =3 Q))
Exist Py, ..., P, such that

e Ph=P

o P,=Q

o (Vi<n—1)(Pivig Pyn vV PpivigP vV Pi=4 Pi)
Theorem (Church-Rosser theorem for =p)

P=5Q
HT.PI>5T/\QI>5T

Proof
Whiteboard.

Lambda Calculus
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Beta Equality

Corollary
If P,Q) € f-nfand P =3 Q, then P =, Q.

Corollary

The relation =g is non-trivial (not all terms are 3-convertible to each other).

Proof
Whiteboard.
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Combinatory Logic



Introduction

Idea

To do logic and mathematics without use bound variables.

Combinators

Operators which manipulate expressions by cancellation, duplication, bracketing and permuta-
tion.
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Introduction

Example (informal)

The commutative law for addition

Veyx+y=y+z,

can be written as
A=CA,

where Axy represents x + y and C is a combinator with the property

Cfzy= fyx.
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Introduction

Example (some combinators (informal))

Bfgz=f(gx)
B'fgz=g(f2)
lz==x

Kry==x

Sfgz=fa(g9z)
Wfx=fxx

composition operator

reversed composition operator
identity operator

projection operator

stronger composition operator

doubling operator
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Introduction

Definition (CL-terms)

v €V = v € CL-terms
c € C = c € CL-terms
X,Y € CL-terms = (X Y') € CL-terms

where

V' . Set of variables
C ={l,K,S,...}: Set of atomic constants

FV(X): The set of variables occurring in X.
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Introduction

Definition (atoms, basic combinators and combinator)

An atom is a variable or atomic constant. The basic combinators are |, K and S. A combinator
is a CL-term whose only atoms are basic combinators.
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Introduction
Definition (substitution [U/z]Y")
The result of substituting U for every occurrence of x in Y

[U/z|z=U
[U/z]a=a for all atoms a # x
U/l (VW) = ([U/]V) ([U/x] W)

Combinatory Logic 27/122



Weak Reduction

Definition (weak redex)
The CL-terms | X, KXY and SXY Z.

Definition (weak contraction (U >y, V))

Replace an occurrence of a weak redex in U using:

| X by X,
KXY by X,
SXYZbyXZ(Y Z).

Combinatory Logic 28/122



Weak Reduction

Definition (weak reduction (U >, V))
The CL-term U is changed to V' by a finite (perhaps empty) series of weak contractions.

Definition (weak normal form)

A CL-term which contains no weak redex.

20/122

Combinatory Logic



Weak Reduction

Example
Let B=S(KS)K. Then BXY Z 1y, X (Y Z) (whiteboard).
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Weak Reduction

Example
Let B=S(KS)K. Then BXY Z 1y, X (Y Z) (whiteboard).

Example
Let W =SS (KI). Then

i) WXY >, XYY and

i) WWW >y, WWW >y, ---

Combinatory Logic 31/122



Weak Reduction

Theorem (substitution theorem for >, )

Xy Y=[U/x]X >y, [U/x]Y.

Theorem (Church-Rosser theorem for >, )

P, M Pry, N
AT M >y T AN >y T

Corollary (uniqueness of nf)

A CL-term can have at most one weak normal form.
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Abstraction

Idea
To define a term [z].M such that

([z].M) N by [N/z] M.

Definition (abstraction)

For every term M and every variable z,

[].M = KM if 2 ¢ FV(M) (1)
[z].x =1 (2)
Uz =U if ¢ FV(U) (3)
[].UV =S ([2].U) ([z].V) if neither (1) nor (3) applies (4)
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Abstraction

Example
[z].xy =S| (Ky) (whiteboard).
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Abstraction

Theorem

For every term M and every variable x, [z].M is always defined, does not contain x and
([x]. M)z >y M.

Proof
Whiteboard.

Theorem

For every term M and every variable x,
([x]. M) N >y [N/x] M.

Notation
(X1, 29, ..., x| M = [z1].([z2]-(- . . ([xn]. M) ...)).
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Abstraction

Example
[z,yl.xyy =SS (KI) =W (whiteboard).
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Weak Equality

Definition (weak equality or weak convertibility (X =,, Y))
Exist Xy, ..., X, such that

) Xo=X

i) X, =Y

i) (Vi<n—1)(X b0 Xis1 V Xip1 b0 X5)

Theorem (Church-Rosser theorem for =)

X=yY
AT X Dy TANY Dy T

Corollary

If X and Y are distinct weak normal forms, them X #,, Y; in particular S #,, K. Hence =, is
non-trivial in the sense that not all terms are weakly equal.
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Weak Equality

About the ‘weak’ adjective

X =3Y = \z.X =5 \z.Y,

but
X =y Y # [z].X =, [2].Y.

Example

Let X =Szyzand Y =x2(yz). Then X =, Y, but [2].X #, [2].Y, where
[z]. X =S(SS(Ky)) (K=z),
[2].Y =S (S (Kz2)) (K(y2)).

Combinatory Logic 38/122
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Introduction

Notation

Meaning for A

Meaning for CL

term
X=Y

X >Bw Y
X =3, Y
A\x

A-term
X=Y
X I>B Y
X =3Y
AT

CL-term

X isidentical to Y
Xy Y

X =Y

]
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The Fixed-Point Theorem

Idea

For every term X there is a term P such
X P =3, P.

The term P is called a fixed-point of X.

The Power of A and Combinators 41/122



The Fixed-Point Theorem

Theorem (fixed-point theorem)

There is a combinator Y such that for every term X
LYX =5, X(YX).
2. Y X pgy X(YX).

The Power of A and Combinators 42/122



The Fixed-Point Theorem

Theorem (fixed-point theorem)
There is a combinator Y such that for every term X
1Y X =5, X (YX).
2. Y X by, X(YX).
Proof.
Y Turing = U U, where U = Au.Az.x (vux) (whiteboard).

The Power of A and Combinators
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The Fixed-Point Theorem

Corollary

For every term Z and n > 0, the equation
TYL.. - Yn =2
can be solved for z. That is, there is a term X such that

Xy1. yn =puw [X/2] Z.
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The Fixed-Point Theorem

Corollary
For every term Z and n > 0, the equation

TYL.. - Yn =2
can be solved for z. That is, there is a term X such that

Xy1...yn =pw [X/l’] Z.

Proof.
X=Y(Azyr... yn-Z) (whiteboard). [ |
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The Fixed-Point Theorem

Definition (fixed-point combinator)

A fixed-point combinator is any combinator Y such Y X =3, X (Y X), for all terms X.

The Power of A and Combinators 46/122



The Fixed-Point Theorem

Example

Y Curry-Rosenbloom = AZ.V V', where V' = Ay.x (yy) is a fixed-point combinator. (Whiteboard)
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Bohms's Theorem

Definition (7)-redex)

In A-calculus, a A-term of form Ax.M = with x ¢ FV(M) is called an n-redex and is said to
n-contract to M.

Definition (Sn-normal forms)

In A-calculus, a A-term which contains no f-redex and no 7-redex.

Bn-nf: The set of all Sn-normal forms.

Example
The A-term Au.Az.ux is in B-nf but not in Sn-nf.
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Bohms's Theorem

Definition (strong normal forms)
In CL, the class of strong nf is defined inductively by
@ All atoms other than |,K and S are in strong nf.

o If Xy,...,X, are in strong nf, and a is any atom # |, K, S, then a X ... X, is in strong
nf.

e If X is in strong nf, then so is [z].X.
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Bohms's Theorem

Theorem (Bohms's theorem)

Let M and N be combinators, either in Sn-normal form (in A) or in strong normal form (in
CL). If M # N, then there exists n > 0 and combinators Ly, ..., L, such that

MLy...Lyxy > T,
NLy...Lyxy bguw y-
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Bohms's Theorem

Corollary
Let M and N be distinct combinators in Sn-normal form (in A) or in strong normal form (in

CL). If we add the equation M = N as a new axiom to the definition =g or =, then all terms
become equal.

Proof
Whiteboard.
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Leftmost Reduction

Idea

Proving that a given term has no normal form.

Definition (contraction (X >rY) )
(X>RrY): Risan redexin X and Y is the result of contracting R in X.

Example

(Az.(A\y.y @) 2) v (ryya) - (AT.2T) V.

The Power of A and Combinators

52/122



Leftmost Reduction

Definition (reduction)

A reduction p is

CL: X1[>R1 X21>R2---
A X1>R1YIEO¢X2DR2"'
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Leftmost Reduction

Definition

Length of a reduction: The number of its contractions.
Terminus: The last term of a reduction of length finite.

A reduction p has maximal length iff either p is infinite or its terminus contains no redexes.

A redex is maximal iff it is not contained in any other redex.
A (maximal) redex is the left most maximal redex iff it is the leftmost of the maximal redexes.

Leftmost reduction: In every contraction, the contracted redex is the leftmost maximal redex.
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Leftmost Reduction

Example
Let X =S (I (Kzy)) (I=2).
Redexes: | (Kzy), Kzy and | z.

Maximal redexes: | (Kzy) and | z.
Leftmost redex: | (Kzy).

The Power of A and Combinators
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Leftmost Reduction

Example
Let X =S (I (Kzy)) (I=2).

Redexes: | (Kzy), Kzy and | z.
Maximal redexes: | (Kzy) and | z.
Leftmost redex: | (Kzy).

Example
The leftmost reduction for X.

S(H(Kzy))(1z) b1 S (Kzy)(l 2)
>1w Sx (ll)

Plw ST 2
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Leftmost Reduction

Theorem (leftmost reduction theorem)

If a term X has a normal form X*, then the leftmost reduction of X is finite and ends at X™.

The Power of A and Combinators 57/122
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Representability
Definition
Let X, Y be A-terms or CL-terms. Then
Xy =v,
X"y = X(X"Y).

Definition (Church numerals)

For A: n = \zy.x"y,
For CL: n = (SB)"(KI),where B = S(KS)K.

Representing the Computable Functions
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Representability

Definition (representability)
Let ¢ be a partial function ¢ : N — N. A term X represents ¢ iff

oni,...,nym) =p = X01...Mm =p.w P,
o(ni,...,ny) does not exist = X7y ... M, has no nf.

Representing the Computable Functions 60/122



Representability

Example

The successor function o(n) = n + 1 is represented by

In \: @ = Auzy.z(uzy) (whiteboard)

Definition (conditional operator)

D = Azyz.z(Ky)x
For all X,Y

DXY0 =g, X (whiteboard)
DXYk+1=p, Y (whiteboard)

DXYm is called if n =0 then X, else Y.
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Recursion Using Fixed-Points

Example (informal)
(From: Peyton Jones [1987])

fac = An.if n = 0 then 1 else n x fac (n — 1)
fac=An.(...fac...)
fac=(Afn.(... f...)fac

h=Afn.(...f...) (not recursivel)
fac = h fac (fac is a fixed-point of h!)

fac=Yh

Representing the Computable Functions 62/122



Recursion Using Fixed-Points

Example (cont.)

facl=Yh1
=g.w h(Yh) 1
=Afn.(...f...))(Yh)1
>3 if 1 =0 then 1 else 1% (YR 0)
Dgw 1 * (Yh0)
=gw 1% (R(Yh) 0)
=1x((Afn.(...f...)(Yh)0)
>3 1% (if 0 =0 then 1 else 1% (Yh (—1)))
Dgw lx1
>gw 1

63/122
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Representing the Computable Functions

Theorem (representation of Turing-computable functions)

In A or CL every Turing-computable function can be represented by a combinator.

Representing the Computable Functions 64/122
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The Definitions of the Theories

Definition (Aj3, formal theory of S-equality)
Formulas: M = N, where M, N € \-terms.

Axiom-schemes:

(a) Aze.M = \y.ly/z|M ify € FV(M),
() (w.M)N = [N/a]M,
(p) M =M.
Rules of inference:
M =M M=N N=P
W) Nar = Nar o M= ™) M=P
(V) M = M/ )\.’ﬂM = )\JZ’M’ (0-) M=N
MN =M'N N=M
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The Definitions of the Theories

Definition (Aj3, formal theory of S-equality)

Deductions: A\, A1,..., A, = B (There is a deduction of B from the assumptions 44,..., 4,
in AB).

Theorems: A3+ B (The formula B is probable in A\3).

The Formal Theories A8 and CLyv 67/122



The Definitions of the Theories

Example
Let M and N be two closed terms

(Ax.(A\y.z))M = [M/z] \y.x = \y.M )
(Az.(Ay.z))MN = (A\y.M)N (Ay.M)N = [N/ylM =M
(Ax.(A\y.x))MN = M

(7)

That is to say, A F (Azy.2)MN = M.

Remark
A is a equational theory and it is a logic-free theory (there are not logical connectives or
quantifiers in its formulae).
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The Definitions of the Theories

Definition (AS3, formal theory of S-reduction)
(Similar to the formal theory of S-equality, but:
1. Formulas: M >g N.
2. To change ‘=" by >g.
3. Remove the rule (0).)

Formulas: M >g N, where M, N € A-terms.

Axiom-schemes:

() Axz.M  pgAy.y/z]M ify €e FV(M),
(8)  (Az.M)N bg [N/x|M,
(p) M > M.
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The Definitions of the Theories

Definition (AS3, formal theory of S-reduction)

Rules of inference:

Ml>lg M’ MDﬁM’
W) N aroy N O N o awdl
() MDgMI MDgN NDgP
gy b M
MNuwg M'N (7) Moy P

Theorem

MDBN<:>>\5|—MI>/3N,
M =g N <= A3+ M=N.
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The Definitions of the Theories

Definition (CLw, formal theory of weak equality)
Formulas: M = N, where M, N € CL-terms

Axiom-schemes:

0 1X =X,
(K) KXY =X,

(S) SXYZ=XZ(YZ),
(p) X =X

Rules of inference: The same rules than the theory A5 except the rule (£).
Deductions: CLw, Aq,..., A, F B.
Theorems: CLw - B.

71/122



The Definitions of the Theories

Definition (CLw, formal theory of weak reduction)

Similar to the formal theory of S-reduction.

Theorem

M vy N<— CLwF M >, N,
M=, N+ CLwt M = N.

The Formal Theories A8 and CLw 72/122



Equivalence of Theories
T: Theory
F: Formulas of T

Rule of inference R(p): Given by a partial function ¢ : F* — F

Instance of R(¢p):
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Equivalence of Theories

Notation

T,T': Theories with the same formulas
R: Inference rule
C: Formula

Definition (derivable rules)
R is derivable in T iff for each instance of R (with premises Ay,..., A, and conclusion B)
T,A1,...,A, F B.

Definition (admissible rules)

R is admissible in T iff adding R to T as a new rule will not increase the set of theorems of T .

Definition (derivable and admissible formula)

TEHC.
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Equivalence of Theories

Theorem

If R is derivable in T, then R is admissible in 7. The implication in the opposite direction does
not hold in general.

Definition (theories theorem-equivalent)

T and 77 are theorem-equivalent iff every rule and axiom of 7 is admissible in 77 and vice-versa.

Definition (theories rule-equivalent)

T and T are rule-equivalent iff every rule and axiom of T is derivable in 7’ and vice-versa.
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Equivalence of Theories

Definition (equality relation determined by a theory)
T Formal theory with some equations X =Y.

The equality relation determined by T is =7 is:

X=Y—=TFEX=Y.

The Formal Theories A8 and CLw 76/122
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Extensional Equality

e For functions: Vx (f(z) = g(x)) = f =g.
@ For programs: It two programs compute the same function, are they the same program?
Theorem

The theory A( is not extensional.

Proof.
Let FF' =y and G = Az.yx. Then for all X

M3 F FX =GX,

but
MEFF=G. [ |
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Extensional Equality

Rule and axiom-scheme to express extensionality

( Mz=Nz g pvuN),
(n) Xe.Mx=M if x  FV(M).

Definition (theories A3¢ and A\(7)

ABC A8+ (Q),
BN AB ().

Extensionality in Lambda Calculus 79/122



Extensional Equality

Theorem

The theories A\3¢ and ABn are rule-equivalents.

Proof.
1. (¢) is derivable in Afn, i.e.

ABn, Mz = Na+ M = N (with 2 € FV(MN)). (Whiteboard).

2. (n) is derivable in A\S3¢, i.e.
ABCH Az.Mx = M (with x ¢ FV(M)). (Whiteboard).

Definition (extensional equality in \)

M =yext N <= \B(+ M = N.
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Beta-Eta Reduction in Lambda Calculus

Definition (7-redex and contractum)

An n-redex is any A-term Az.Mx with € FV(M). Its contractum is M.

Definition (n-contraction (P 1, Q))

Replace an occurrence of a n-redex in P by its contractum.

Definition (n-reduction (P >, Q))

P is changed to @ by a finite (perhaps empty) series of n-contractions and a-conversions.

Extensionality in Lambda Calculus
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Beta-Eta Reduction in Lambda Calculus

Definition (fn-redex)

An f(n-redex is a B-redex or an 7-redex.

Definition (fn-contraction (P >1g, Q))

Replace an occurrence of a S7-redex in P by its contractum.

Definition (fn-reduction (P >g, Q))

P is changed to @ by a finite (perhaps empty) series of n-contractions and a-conversions.

Extensionality in Lambda Calculus
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Beta-Eta Reduction in Lambda Calculus

Definition (n-normal forms)
A A-term which contains no gn-redex.
Theorem (Church-Rosser theorem for g, )

PDBUM PDﬁnN
AT.M >an T/\NI>5T

Theorem (relation between >g, and =)e)

P =)t Q iff @ can be obtained from P by a finite (perhaps empty) series of 3n-contractions
and reversed fBn-contractions and a-conversions.

Extensionality in Lambda Calculus
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Beta-Eta Reduction in Lambda Calculus

Theorem (Church-Rosser theorem for =jext)

P =)ext Q
iT.P >an TANQ >gy T

Corollary

The relation =)ex is non-trivial (not all terms are 3n-convertible to each other).

Extensionality in Lambda Calculus
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Extensional Equality

Theorem

The theory CLw is not extensional.

Proof.
Let X = S(Ku)l and Y = w, then for all M

CLwH XM =YM,
but
CLwH X =Y.

Extensionality in Combinatory Logic
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Extensional Equality
Rule and axiom-scheme to express extensionality

© Xe=Yz o regEv(xy),

Definition (theories CL¢ and CL¢)

CLC : CL + (¢),
CLE : CL + (€).

Extensionality in Combinatory Logic
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Extensional Equality

Exercise
Probe that neither () nor (§) are admissible in CLw (whiteboard).

Extensionality in Combinatory Logic 88/122



Extensional Equality

Definition (extensional equality in CL)

X =cext Y <= CL(F X =Y.

Example
SK =cext KI. (Whiteboard).

Extensionality in Combinatory Logic
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Extensional Equality

Theorem

The theory CL¢ determines the same equality-relation =¢ext as CL( does.
Proof.
1. (¢) is derivable in CL¢, i.e.
CL, Xz =Yz kX =Y (with zx ¢ FV(XY)). (Whiteboard).
2. (&) is derivable in CL(, i.e.
CL(, X =Y I [z].X = [z].Y. (Whiteboard). [ |
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Axioms for Extensionality in CL

Definition (formal theory CLextay)
CLext,y : CLw + E-ax 1 4+ - -+ + E-ax 5, where

S(S(KS)(S(KK)(S(KS)K))) = S(KK)
S(S(KS)K )( =1

KI) =1

KK)

)
)
) =
)
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Axioms for Extensionality in CL

Definition (other version of E-ax 1,...,E-ax 5)

[, y, v]. (Kzv)(Kyv) = [z, y,v].2 (E-ax 1)

[z, v]. (Kzv)(lv) = [z, v].2v (E-ax 2)

[z, 0] I(zv) = [z, v].20 (E-ax 3)

(2,9, 0] K(@0) (o) = [2,, o] w0 (E-ax 4)
(2,9, 28], S@0)(uv)(20) = [2, 7 v)-20(20) (o (20)) (E-ax 5)

Motivation

We are looking axioms which will make (§) admissible in CLextay:

CLextax - X =Y = CLextax - [z].X = [z].Y.
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Axioms for Extensionality in CL

Theorem
The theory CLext,y is theorem-equivalent to CLE.

Extensionality in Combinatory Logic 93/122



Strong Reduction

Definition (strong reduction > )

The formal theory of strong reduction:

Formulas: X > Y, where X,Y € CL-terms

Axiom-schemes and rules: The same than CLw changed ‘=" by ‘> and the rule (o) omitted.
New rule added:

XY
(©) [z]. X > [2].Y

Example
SK » KI. (Whiteboard).
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Strong Reduction

Theorem (Church-Rosser theorem for > )

U>X U>Y
dZX >ZNZ>Y

Definition (strong irreducibility)
X is called strongly irreducible iff, for all Y’
X>Y=Y=X.

Theorem

The strongly irreducible CL-terms are exactly the terms in the strong nf class.

Extensionality in Combinatory Logic
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Applicative Structures

Definition (valuation)
Let D a set. A valuation is a mapping p : Vars — D.

_ ply), ify#a
Notation: [d/x]p = {d otherwise

Definition (applicative structure)

An applicative structure is a structure (D, -) where
1. |D| > 2.
2. -:D? = D.
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Combinatory Algebras

Definition (combinatory algebra)

A combinatory algebra is a structure (convention: association to the left for -) D = (D, -) where

1. |D| > 2.
2. -:D* > D.
3. There are two elements k, s € D such that for all a,b,c € D,

k-a-b=a, (5)
s-a-b-c=a-c-(b-c). (6)
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Combinatory Algebras

Definition (model of CLw)

A model of CLw is a structure (D, -, i, k, s) where
1. (D,-) is a combinatory algebra.
2. The elements k and s satisfy (5) and (6).

3. The element 7 satisfies i = s - k - k.

Definition (model of CLextay)

A model of CLext,y is a model (D,-,i,k,s) of CLw that satisfies the extensionality axioms

E-ax 1,...,E-ax 5.
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Combinatory Algebras

Definition (interpretation of a term)

Let D = (D, -, i, k,s) where (D, -) is a combinatory algebra and p a valuation. The interpretation
of X in D under p, denoted [X]2, is defined by

[[X]]E) : CL-term — D

[=]} = p(=),
[0 =4,
[KIp =k,
[S]) = s,

[XYT], =[x, - [¥],.
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Combinatory Algebras

Definition (satisfaction)

Dol X =Y < [X]; = [Y]),
DEX=Y < (Vp)D,pE= X =Y).
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Combinatory Algebras

Example (term model)
Let 7 € {CLw, CLext,x}. For each CL-term X,

X]={Y:TFHX=Y}.

The TM(T) (the term model of T) is (D, -, i, k, s) where

D = {[X]: X is a CL-term},

X]- V] = [XY],
I,
K],

(X
=
[
[S].
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Combinatory Algebras

Example (cont.)

In this model, interpretation is the same as substitution
[[X]]p = [[Yl/xla cee 7Yn/xn]X]7
where

FV(X)
V; € FV(X).p(x;)

{z1,..., 20},
Y;

Models of CL
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Combinatory Algebras

Theorem (submodel theorem)

Let 7 € {CLw, CLextax}. If (D, i,k,s) is a model of 7 and D’ is a subset of D which
contains i, k and s and is closed under -, then (D', - i, k,s) is a model of T.

Definition (interiors)

Let 7 € {CLw, CLext,x} and D = (D, -,i,k, s) a model of 7. The interior of D is
D° = {[X] : X closed}.

Theorem (interiors)

Let 7 € {CLw, CLextax}. The interior of a model of 7 is also a model of 7.
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The Definition of Lambda Model

Definition (A-model)
A \-model is a triple D = (D, -, [ ]) where
1. (D,-) is an applicative structure.

2. []: A-terms — D is a mapping such that for each valuation p

[=], = p(),
[PQl, =[P, - [Ql,.
[Xz.P], - d =[P, foralld € D,
[[M]]p = [M], if Vo € FVM.p(x) = o(x),
[\z.P], = [Ay.[y/z]P], ify g FV(M),

If (v € D)([Plya, = [Qlaya),) then [\a.P], = [Az.Q],-
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The Definition of Lambda Model

Theorem

Every A-model satisfies all the provable equations if the formal theory AS3.
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The Definition of Lambda Model

Definition (models of A\37)

A model of \37n is a A-model that satisfies the equation Axz.Mx = M for all terms M and all
x ¢ FV(M).
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The Definition of Lambda Model

Example (term models)
Let 7 € {\B,\Bn}. For each A-term M,

[M]={N:TH+M =N}
The TM(T) (the term model of 7) is (D, -, [ ]) where
D ={[M]: Mis a \-term},
[P]-1Q] = [PQ],
[M], = [[N1/21, ..., No/zn] M],

where

FV(M) =A{z1,...,z,},
Vo, € FEV(M).p(x;) = N;
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Scott's D,.: Complete Partial Orders

The problem

“In the A-calculus the objects serve both as arguments and as functions to be applied
to these arguments. Therefore one would like that a semantics for A-calculus consist
of a domain D such that its function space DP is isormorphic to D. By Cantor's
theorem this is impossible.” [Barendregt (1981) , p. 86]
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Scott's D,.: Complete Partial Orders
Solution

@ D..: complete partial order
@ [Ds — Du]: continuous functions (under Scott's topology)
o Duo 2 [Doo — Dool.

Dana Scott
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Scott's D,.: Complete Partial Orders

Definition (partially ordered sets (poset))

A poset is a structure (D,C) where D is a set and C: D? — D is transitive, anti-symmetric,
and reflexive.

Let (D,C) a poset and let X C D.

Definition (upper bound)
An upper bound (u.b) of X is any b € D such

Va € X.a Cb.

Definition (least upper bound (l.u.b.) (or supremum))
The l.u.b. of X called | | X, it is an upper bound b of X such

Vee€ D.cisaub. of X = bLC c.
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Scott's D,.: Complete Partial Orders

Definition (bottom)
D has an element called bottom (denoted L) iff

VreD.1LCz.

Definition (directed sets)

Let (D,C) a poset. A subset X C D is said to be directed iff X # () and
Va,be X.dce X.aC cAbCec.

Definition (complete partial orders, c.p.o.s)
A c.p.o. is a poset (D, C) such that

1. Dhasa l.

2. Every direct subset X C D has a l.u.b.

Models of Lambda Calculus
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Scott's D,.: Complete Partial Orders

Definition (set NT)

Nt =NuU{l} (L¢N),

Va,b eNt.aCb<= (a=1LAbeEN)Va=h.

() \\\\\\\\\T\\\\\\\\ | ////////ji////////; .'
1
Theorem

(N*T,C) is a c.p.o.

@ The element L represents an
undefined value (partial
functions).

@ a C b represents that b “is more

defined” than a or both are

equals (semantic approximation

order).
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Scott's D,.: Complete Partial Orders
Let (D,C) and (D’,C’) be c.p.o.s and ¢ a function ¢ : D — D'.

Definition (monotonicity)

The function ¢ is monotonic iff
aC b= ¢(a) T ¢(b).

Example

Let o : NT — NT be a monotonic function. If ¢(L) = 1 then ¢ is a constant function, i.e.
Vn € Nt.p(n) = 1.
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Scott's D,.: Complete Partial Orders

Definition (continuity)
The function ¢ is continua iff, for all directed X C D

p(L]X) = e(x)),

where

p(X) ={p(a) :a € X}.
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Scott's D,.: Complete Partial Orders

Definition (function-set [D — D'])

[D — D']: For c.p.o.s (D,C) and (D’,C’), the set of all continuous functions.
For ¢,1 € [D — D’], we define

¢ C ¢ <= Vd € D.p(d) ' 9(d).

Theorem
The function Vd € D.1(d) = L' is the bottom of [D — D’].

Theorem
[D — D'] is a c.p.o.
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Scott’'s D.,: The Construction

Definition (sequence Dy, D1, ...)

DO = N+7
Dui1 = [Dn — Dyl

Theorem
Every D,, is a c.p.o.
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Scott’'s D.,: The Construction

Example
From: http://en.wikibooks.org/wiki/Haskell/Denotational_semantics

The factorial function
f(n) = ifn==0then lelsen- f(n—1)

Approximations of the factorial function

fit1(n) = ifn==0then lelsen- fy(n —1)
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Scott’'s D.,: The Construction

Example (cont.)

1 ifnisO
fo(n) =1, fi(n) =
1 else
. 1 ifnisO
1 ifnisO 1 sl
if nis
=<1 ifnisl , = :
fa(n) R e P T
1 else
1 else

Then, L= foCE fiE foE....
The idea is

vn.| |(fo(n) € fi(n) € fo(n) C...) = f(n).
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Scott’'s D.,: The Construction

About the A-model (D, -, [])
@ D, cannot be a set of functions (no function can be applied to itself).

@ Scott's idea:

o Members of D, are infinite sequences of functions

© = (po, P1,¥2,...), where v, € D,.

o Application
@Y = (p1(¥o), p2(¥1), .. .)

o Self-application
¢ = (p1(®0), p2(01);---)

121/122



References

>

4

Barendregt, H. P. [1981] (2004). The Lambda Calculus. Its Syntax and Semantics. Revised
edition, 6th impression. Vol. 103. Studies in Logic and the Foundations of Mathematics. Elsevier
(cit. on pp. 3, 110).

Barendregt, Henk and Barendsen, Erik (2000). Introduction to Lambda Calculus. Revisited
edition (cit. on p. 3).

Hindley, J. Roger and Seldin, Jonathan P. (2008). Lambda-Calculus and Combinators. An
Introduction. Cambridge University Press (cit. on pp. 3, 4).

Peyton Jones, Simon L. (1987). The Implementation of Functional Programming Languages.
Series in Computer Sciences. Prentice-Hall International (cit. on p. 62).



	Introduction
	Lambda Calculus
	Combinatory Logic
	The Power of Lambda and Combinators
	Representing the Computable Functions
	The Formal Theories Lambda Beta and CLw
	Extensionality in Lambda Calculus
	Extensionality in Combinatory Logic
	Models of CL
	Models of Lambda Calculus
	References

