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Lambda Calculus



What is the Lambda Calculus?

Invented by Alonzo Church (around 1930s).

The goal was to use it in the foundation of mathematics. Intended for studying functions
and recursion.
Computability model.
Model of untyped functional programming languages.
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Introduction
λ-calculus is a collection of several formal systems
λ-notation

Anonymous functions
Currying
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Introduction

Definition (λ-terms)
The set of λ-terms is inductively defined by

v ∈ V ⇒ v ∈ λ-terms (atom)
c ∈ C ⇒ c ∈ λ-terms (atom)

M, N ∈ λ-terms ⇒ (MN) ∈ λ-terms (application)
M ∈ λ-terms, x ∈ V ⇒ (λx.M) ∈ λ-terms (abstraction)

where V/C is a set of variables/constants.
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Introduction

Conventions and syntactic sugar
M ≡ N means the syntactic identity
Application associates to the left
MN1N2 . . . Nk means (...((MN1)N2)...Nk)
Application has higher precedence
λx.PQ means (λx.(PQ))
λx1x2 . . . xn.M means (λx1.(λx2.(. . . (λxn.M) . . . )))

Example
(λxyz.xz(yz))uvw ≡ ((((λx.(λy.(λz.((xz)(yz)))))u)v)w).
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Term-Structure and Substitution

Substitution ([N/x]M)
The result of substituting N for every free occurrence of x in M , and changing bound variables
to avoid clashes.

[N/x]x ≡ N ; (1)
[N/x]a ≡ a, for all atoms a ̸≡ x; (2)
[N/x](PQ) ≡ ([N/x]P )([N/x]Q); (3)
[N/x](λx.P ) ≡ λx.P ; (4)
[N/x](λy.P ) ≡ λy.P, y ̸≡ x, x ̸∈ FV(P ); (5)
[N/x](λy.P ) ≡ λy.[N/x]P, y ̸≡ x, x ∈ FV(P ), y ̸∈ FV(N); (6)
[N/x](λy.P ) ≡ λz.[N/x][z/y]P, y ̸≡ x, x ∈ FV(P ), y ∈ FV(N); (7)

where in the last equation, z is chosen to be a variable ̸∈ FV(NP ).

Lambda Calculus 9/64



Term-Structure and Substitution

Example
[(λy.vy)/x](y(λv.xv)) ≡ y(λz.(λy.vy)z) (with z ̸≡ v, y, x).
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Term-Structure and Substitution

α-conversion or changed of bound variables
Replace λx.M by λy.[y/x]M (y ̸∈ FV(M)).

α-congruence (P ≡α Q)
P is changed to Q by a finite (perhaps empty) series of α-conversions.

Example
Whiteboard.

Theorem
The relation ≡α is an equivalence relation.

Lambda Calculus 11/64



Beta-Reduction

β-contraction (· ▷1β ·)
(λx.M)N : β-redex

[N/x]M : contractum

(λx.M)N ▷1β [N/x]M

P ▷1β Q: Replace an occurrence of (λx.M)N in P by [N/x]M .

Example
Whiteboard.
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Beta-Reduction

β-reduction (P ▷β Q)
P is changed to Q by a finite (perhaps empty) series of β-contractions and α-conversions.

Example
(λx.(λy.yx)z)v ▷β zv.
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Beta-Reduction

β-normal form
A term which contains no β-redex.

β-nf: The set of all β-normal forms.

Example
Whiteboard.
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Beta-Reduction

Theorem (The Church-Rosser theorem for ▷β (the diamond property))

P ▷β M P ▷β N

∃ T.M ▷β T ∧ N ▷β T

P

}}}} !! !!
M

!! !!

N

}}}}
∃ T

Corollary
If P has a β-normal form, it is unique modulo ≡α; that is, if P has β-normal forms M and N ,
then M ≡α N .

Proof
Whiteboard.
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Beta-Equality

β-equality or β-convertibility (P =β Q)
Exist P0, . . . , Pn such that

P0 ≡ P

Pn ≡ Q

(∀i ≤ n − 1)(Pi ▷1β Pi+1 ∨ Pi+1 ▷1β Pi ∨ Pi ≡α Pi+1)

Theorem (Church-Rosser theorem for =β)

P =β Q

∃ T.P ▷β T ∧ Q ▷β T

Proof
Whiteboard.
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Beta-Equality

Corollary
If P, Q ∈ β-nf and P =β Q, then P ≡α Q.

Corollary
The relation =β is non-trivial (not all terms are β-convertible to each other).

Proof
Whiteboard.
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Fixed-Point Combinators

Idea
For every term F there is a term X such

FX =β X.

The term X is called a fixed-point of F .
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Fixed-Point Combinators

Theorem
∀F∃X.FX =β X.

Proof.
Let W ≡ λx.F (xx), and let X ≡ WW . Then

X ≡ (λx.F (xx))W
=β F (WW )
≡ FX
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Fixed-Point Combinators

Theorem
∀F∃X.FX =β X.

Proof.
Let W ≡ λx.F (xx), and let X ≡ WW . Then

X ≡ (λx.F (xx))W
=β F (WW )
≡ FX
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Fixed-Point Combinators

Fixed-point combinator
A fixed-point combinator is any combinator Y such that YF =β F (YF ), for all terms F .

Theorem (Turing)
The term Y ≡ UU , where U ≡ λux.x(uux) is a fixed-point combinator.

Proof
Whiteboard.

Theorem (Curry and Rosenbloom)
The term Y ≡ λf.V V , where V ≡ λx.f(xx) is a fixed-point combinator.

Proof
Whiteboard.
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Fixed-Point Combinators

Corollary
For every term Z and n ≥ 0, the equation

xy1 . . . yn = Z

can be solved for x. That is, there is a term X such that

Xy1 . . . yn =β [X/x]Z.

Proof
X ≡ Y(λxy1 . . . yn.Z) (whiteboard).
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Leftmost Reduction

Idea
Proving that a given term has no normal form.

Definition
A contraction in X is an order triple ⟨X, R, Y ⟩ where R is an redex in X and Y is the result
of contracting R in X.

Notation
A contraction ⟨X, R, Y ⟩ is denoted by X ▷R Y .
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Leftmost Reduction

Example
Two contractions in (λx.(λy.yx)z)v.
(i) (λx.(λy.yx)z)v ▷R (λy.yv)z, where R ≡ (λx.(λy.yx)z)v.
(ii) (λx.(λy.yx)z)v ▷R (λx.zx)v, where R ≡ (λy.yx)z.
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Leftmost Reduction

Definition
A reduction ρ is a finite or infinite sequence of contractions separated by α-conversions

X1 ▷R1 Y1 ≡α X2 ▷R2 . . .

Question
Given an initial term X, there is some way of choosing a reduction that will terminate if X has
a normal form?
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Leftmost Reduction

Definition
A redex is outermost (or maximal) iff it is not contained in any other redex.

Definition
A (outermost) redex is the leftmost outermost redex (or leftmost maximal redex) iff it is
the leftmost of the outermost redexes.

Definition
A reduction has maximal length iff either it is infinite or its last term contains no redexes.
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Leftmost Reduction

Definition
The leftmost reduction (or normal reduction) of a term X1 is a reduction

X1 ▷R1 X2 ▷R2 X3 ▷R3 . . .

where
(i) Every Ri is the leftmost outermost redex of Xi.
(ii) The reduction has maximal length.
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Leftmost Reduction

Example
The leftmost reduction for (λy.a)Ω, where Ω ≡ (λx.xx)(λx.xx).

(λy.a)Ω ▷β a.
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Leftmost Reduction

Example
The leftmost reduction for X(Y Z), where X ≡ λx.xx, Y ≡ λy.yy and Z ≡ λz.zz.

X(Y Z) ▷β (Y Z)(Y Z)
▷β (ZZ)(Y Z)
...
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Leftmost Reduction

Theorem (Standardization theorem (or leftmost reduction theorem))
If a term X has a normal form X∗, then the leftmost reduction of X is finite and ends at X∗.
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Lambda Calculus and Inconsistencies

Paradoxes
Curry’s paradox (λ-calculus + logic)
Rusell’s paradox (λ-calculus + set theory)
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Curry’s Paradox

Introduction
Informally, Curry’s paradox is obtained in a deductive theory formed by λ-calculus + logic
formulated by Church [1932, 1933].

Notation
In our presentation of Curry paradox equality means β-equality, that is, A = B := A =β B.

Theorem (Curry’s paradox)
Any proposition is probable in Church’s theory
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Curry’s Paradox
Proof (Rosser [1984, p. 340])
Suppose we have two familiar logical principles:

⊢ P ⊃ P (8)
⊢ (P ⊃ (P ⊃ Q)) ⊃ (P ⊃ Q) (9)

together with modus ponens (if P and P ⊃ Q, then Q).

Let A be an arbitrary proposition. We construct a X such that

⊢ X = X ⊃ A (10)

To do this, we take F = λx.x ⊃ A in the fixed-point theorem. By (8), we get

⊢ X ⊃ X.

Continued on next slide
Lambda Calculus and Inconsistencies 34/64



Curry’s Paradox

Proof (continuation).
Applying (10) to the second Φ gives

⊢ X ⊃ (X ⊃ A).

By (9) and modus ponens, we get
⊢ X ⊃ A.

By (10) reversed, we get
⊢ X.

By modus ponens and the last two formulas, we get

⊢ A.
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Curry’s Paradox

Church’s theory
Adding to the set of λ-terms a constant ⊃, the sub-theory from Church’s theory required for
proving Curry’s paradox is defined by the following inference rules [Barendregt 2014], where Γ
is a set of λ-terms:

hyp (if A ∈ Γ)Γ, A ⊢ A

Γ, A ⊢ B
⊃IΓ ⊢ A ⊃ B

Γ ⊢ A ⊃ B Γ ⊢ A ⊃EΓ ⊢ B

Γ ⊢ A A = B substΓ ⊢ B
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Curry’s Paradox

Proof (Barendregt [2014])
Using the previous inference rules, we prove Curry’s paradox. Let A be an arbitrary proposition
and let X = X ⊃ A by the fixed-point theorem.

Initially, we prove ⊢ X ⊃ A.

X ⊢ X X = X ⊃ A subst
X ⊢ X ⊃ A X ⊢ X ⊃E

X ⊢ A ⊃I⊢ X ⊃ A

And then we prove ⊢ A.

⊢ X ⊃ A
⊢ X ⊃ A X ⊃ A = X subst⊢ X ⊃E⊢ A
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Rusell’s Paradox

See [Paulson 2000, § 4.6].
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Encoding Data in the Lambda Calculus
From [Paulson 2000, Ch. 3].

Booleans

true ≡ λxy.x

false ≡ λxy.y

if ≡ λpxy.pxy

where

if true M N =β M

if false M N =β N
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Encoding Data in the Lambda Calculus

Ordered pairs

pair ≡ λxyf.fxy

fst ≡ λp.p true
snd = λp.p false

where

fst (pair M N) =β M

snd (pair M N) =β N
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Encoding Data in the Lambda Calculus

Natural numbers
Notation:

XnY ≡ X(X(. . . (X︸ ︷︷ ︸
n ‘X’s

Y ) . . . )) if n ≥ 1,

X0Y ≡ Y.

The Church numerals:
n ≡ λfx.fnx
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Encoding Data in the Lambda Calculus
Some operations:

add ≡ λmnfx.mf(nfx)
mult ≡ λmnfx.m(nf)x

isZero ≡ λn.n(λx.false) true

where

add m n =β m + n

mult m n =β m × n

isZero 0 =β true
isZero n + 1 =β false
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Recursion Using Fixed-Points

Example
Let Y be a fixed-point combinator. An informally example using the factorial
function [Peyton Jones 1987].

fac ≡ λn.if n = 0 then 1 else n ∗ fac (n − 1)
fac ≡ λn.(. . . fac . . . )
fac ≡ (λfn.(. . . f . . . )) fac

h ≡ λfn.(. . . f . . . ) - - not recursive!
fac ≡ h fac - - fac is a fixed-point of h!

fac ≡ Y h
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Recursion Using Fixed-Points

Example (cont.)

fac 1 ≡ Y h 1
=β h(Y h) 1
≡ (λfn.(. . . f . . . ))(Y h) 1
▷β if 1 = 0 then 1 else 1 ∗ (Y h 0)
▷β 1 ∗ (Y h 0)
=β 1 ∗ (h(Y h) 0)
≡ 1 ∗ ((λfn.(. . . f . . . ))(Y h)0)
▷β 1 ∗ (if 0 = 0 then 1 else 1 ∗ (Y h (−1)))
▷β 1 ∗ 1
▷β 1
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Representing the Computable Functions

Representability
Let φ be a partial function φ : Nn → N. A term X represents φ iff

φ(m1, . . . , mn) = p ⇒ Xm1 . . . mn =β p,

φ(m1, . . . , mn) does not exits ⇒ Xm1 . . . mn has no nf.

Example
The successor function succ(n) = n + 1 is represented by

succ ≡ λnfx.f(nfx)

Theorem (Representation of Turing-computable functions)
In λ-calculus every Turing-computable function can be represented by a combinator.
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Undecidability
Gödel numbering

# : λ-terms → N
#xi = 2i

#(λxi.M) = 3i5#M

#(MN) = 7#M 11#N

Notation: ⌜M⌝ = #M

Theorem (Double fixed-point theorem)
∀F∃X.F⌜X⌝ =β X.

Proof
Whiteboard.
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Undecidability

Theorem (Rice’s theorem for the λ-calculus)
Let A ⊂ λ-terms such as A is non-trivial (i.e. A ̸= ∅, A ̸= λ-terms). Suppose that A is closed
under =β (i.e. M ∈ A, M =β N ⇒ N ∈ A). Then A is no recursive, that is, #A = {#M |
M ∈ A} is not recursive.

Proof
Whiteboard (see [Barendregt 1990]).

Theorem
The set NF = {M | M has a normal form} is not recursive.

Proof.
The set NF is not trivial and it is closed under =β.
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ISWIM: Lambda Calculus as a Programming Language

ISWIM: If you See What I Mean
Landin [1966]
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ISWIM Features
(From [Paulson 2000, Ch. 3])

Simple declaration
let x = M in N ≡ (λx.N)M

Example
let n = 0 in succ n

let m = 0 in (let n = 1 in add m n)
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ISWIM Features

Function declaration
let fx1 . . . xk = M in N ≡ (λf.N)(λx1 . . . xk.M)

Example
let succ n = λfx.f(nfx) in succ 0
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ISWIM Features

Recursive declaration
letrec fx1 . . . xk = M in N ≡ (λf.N)(Y(λfx1 . . . xk.M))

Example
letrec fac n = if (n == 0) 1 (n ∗ fac(n − 1)) in fac 0
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ISWIM Features

Pairs
(M, N) : pair constructor
fst, snd : projections
let λ(x, y).E ≡ λz.(λxy.E)(fst z)(snd z)

Example
let (x, y) = (2, 3) in add x y
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The Formal Theory λβ of β-Equality

Formulas
M = N , where M, N ∈ λ-terms.

Axiom-schemes

(α) λx.M = λy.[y/x]M if y ∈ FV(M),
(β) (λx.M)N = [N/x]M,

(ρ) M = M.
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The Formal Theory λβ of β-Equality

Rules of inference

M = M ′
(µ)

NM = NM ′

M = M ′
(ν)

MN = M ′N

M = M ′
(ξ)

λx.M = λx.M ′

M = N N = P (τ)
M = P

M = N (σ)
N = M
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The Formal Theory λβ of β-Equality

Notation
If there is a deduction of B from the assumptions A1, . . . , An in λβ is denoted by

λβ, A1, . . . , An ⊢ B.

Notation
If the formula B is a theorem in λβ is denoted by

λβ ⊢ B.

Remark
λβ is a equational theory and it is a logic-free theory (there are not logical connectives or
quantifiers in its formulae).
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The Formal Theory λβ of β-Equality

Example
Let M and N be two closed terms, then λβ ⊢ (λxy.x)MN = M .

(λx.(λy.x))M = [M/x]λy.x ≡ λy.M
(ν)

(λx.(λy.x))MN = (λy.M)N (λy.M)N = [N/y]M ≡ M
(τ)

(λx.(λy.x))MN = M
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The Formal Theory λβ of β-Equality

Theorem

M =β N ⇐⇒ λβ ⊢ M = N.

Formal Theories 60/64



The Formal Theory λβ of β-Reduction
Similar to the formal theory of β-equality, but:
(i) Formulas: M ▷β N .
(ii) To change ‘=’ by ‘▷β’.
(iii) Remove the rule (σ).

Theorem

M ▷β N ⇐⇒ λβ ⊢ M ▷β N.

Remark
Formal theories for combinatory logic.

Remark
λβ is not a first-order theory.
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