
Lambda Calculus

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2010-2

Introduction

Bibliography
Textbook: Hindley, J. R. and Seldin, J. [2008]. Lambda-Calculus and Combinators. An
Introduction. Cambridge University Press.
Barendregt, Henk and Barendsen, Erik [2000]. Introduction to Lambda Calculus.
Revisited edition, Mar. 2000.
Barendregt, H. P. [1984] [2004]. The Lambda Calculus. Its Syntax and Semantics.
Revised edition, 6th impression. Vol. 103. Studies in Logic and the Foundations of
Mathematics. Elsevier.
Paulson, Lawrence C. [2000]. Foundations of Functional Programming. Lecture notes.
url: http://www.cl.cam.ac.uk/~lp15/ [visited on 10/06/2020].

Introduction 3/64

http://www.cl.cam.ac.uk/~lp15/

Lambda Calculus

What is the Lambda Calculus?

Invented by Alonzo Church (around 1930s).

The goal was to use it in the foundation of mathematics. Intended for studying functions
and recursion.
Computability model.
Model of untyped functional programming languages.

Lambda Calculus 5/64

Introduction
λ-calculus is a collection of several formal systems
λ-notation

Anonymous functions
Currying

Lambda Calculus 6/64

Introduction

Definition (λ-terms)
The set of λ-terms is inductively defined by

v ∈ V ⇒ v ∈ λ-terms (atom)
c ∈ C ⇒ c ∈ λ-terms (atom)

M, N ∈ λ-terms ⇒ (MN) ∈ λ-terms (application)
M ∈ λ-terms, x ∈ V ⇒ (λx.M) ∈ λ-terms (abstraction)

where V/C is a set of variables/constants.

Lambda Calculus 7/64

Introduction

Conventions and syntactic sugar
M ≡ N means the syntactic identity
Application associates to the left
MN1N2 . . . Nk means (...((MN1)N2)...Nk)
Application has higher precedence
λx.PQ means (λx.(PQ))
λx1x2 . . . xn.M means (λx1.(λx2.(. . . (λxn.M) . . .)))

Example
(λxyz.xz(yz))uvw ≡ ((((λx.(λy.(λz.((xz)(yz)))))u)v)w).

Lambda Calculus 8/64

Term-Structure and Substitution

Substitution ([N/x]M)
The result of substituting N for every free occurrence of x in M , and changing bound variables
to avoid clashes.

[N/x]x ≡ N ; (1)
[N/x]a ≡ a, for all atoms a ̸≡ x; (2)
[N/x](PQ) ≡ ([N/x]P)([N/x]Q); (3)
[N/x](λx.P) ≡ λx.P ; (4)
[N/x](λy.P) ≡ λy.P, y ̸≡ x, x ̸∈ FV(P); (5)
[N/x](λy.P) ≡ λy.[N/x]P, y ̸≡ x, x ∈ FV(P), y ̸∈ FV(N); (6)
[N/x](λy.P) ≡ λz.[N/x][z/y]P, y ̸≡ x, x ∈ FV(P), y ∈ FV(N); (7)

where in the last equation, z is chosen to be a variable ̸∈ FV(NP).

Lambda Calculus 9/64

Term-Structure and Substitution

Example
[(λy.vy)/x](y(λv.xv)) ≡ y(λz.(λy.vy)z) (with z ̸≡ v, y, x).

Lambda Calculus 10/64

Term-Structure and Substitution

α-conversion or changed of bound variables
Replace λx.M by λy.[y/x]M (y ̸∈ FV(M)).

α-congruence (P ≡α Q)
P is changed to Q by a finite (perhaps empty) series of α-conversions.

Example
Whiteboard.

Theorem
The relation ≡α is an equivalence relation.

Lambda Calculus 11/64

Beta-Reduction

β-contraction (· ▷1β ·)
(λx.M)N : β-redex

[N/x]M : contractum

(λx.M)N ▷1β [N/x]M

P ▷1β Q: Replace an occurrence of (λx.M)N in P by [N/x]M .

Example
Whiteboard.

Lambda Calculus 12/64

Beta-Reduction

β-reduction (P ▷β Q)
P is changed to Q by a finite (perhaps empty) series of β-contractions and α-conversions.

Example
(λx.(λy.yx)z)v ▷β zv.

Lambda Calculus 13/64

Beta-Reduction

β-normal form
A term which contains no β-redex.

β-nf: The set of all β-normal forms.

Example
Whiteboard.

Lambda Calculus 14/64

Beta-Reduction

Theorem (The Church-Rosser theorem for ▷β (the diamond property))

P ▷β M P ▷β N

∃ T.M ▷β T ∧ N ▷β T

P

}}}} !! !!
M

!! !!

N

}}}}
∃ T

Corollary
If P has a β-normal form, it is unique modulo ≡α; that is, if P has β-normal forms M and N ,
then M ≡α N .

Proof
Whiteboard.

Lambda Calculus 15/64

Beta-Equality

β-equality or β-convertibility (P =β Q)
Exist P0, . . . , Pn such that

P0 ≡ P

Pn ≡ Q

(∀i ≤ n − 1)(Pi ▷1β Pi+1 ∨ Pi+1 ▷1β Pi ∨ Pi ≡α Pi+1)

Theorem (Church-Rosser theorem for =β)

P =β Q

∃ T.P ▷β T ∧ Q ▷β T

Proof
Whiteboard.

Lambda Calculus 16/64

Beta-Equality

Corollary
If P, Q ∈ β-nf and P =β Q, then P ≡α Q.

Corollary
The relation =β is non-trivial (not all terms are β-convertible to each other).

Proof
Whiteboard.

Lambda Calculus 17/64

Fixed-Point Combinators

Idea
For every term F there is a term X such

FX =β X.

The term X is called a fixed-point of F .

Lambda Calculus 18/64

Fixed-Point Combinators

Theorem
∀F∃X.FX =β X.

Proof.
Let W ≡ λx.F (xx), and let X ≡ WW . Then

X ≡ (λx.F (xx))W
=β F (WW)
≡ FX

Lambda Calculus 19/64

Fixed-Point Combinators

Theorem
∀F∃X.FX =β X.

Proof.
Let W ≡ λx.F (xx), and let X ≡ WW . Then

X ≡ (λx.F (xx))W
=β F (WW)
≡ FX

Lambda Calculus 20/64

Fixed-Point Combinators

Fixed-point combinator
A fixed-point combinator is any combinator Y such that YF =β F (YF), for all terms F .

Theorem (Turing)
The term Y ≡ UU , where U ≡ λux.x(uux) is a fixed-point combinator.

Proof
Whiteboard.

Theorem (Curry and Rosenbloom)
The term Y ≡ λf.V V , where V ≡ λx.f(xx) is a fixed-point combinator.

Proof
Whiteboard.

Lambda Calculus 21/64

Fixed-Point Combinators

Corollary
For every term Z and n ≥ 0, the equation

xy1 . . . yn = Z

can be solved for x. That is, there is a term X such that

Xy1 . . . yn =β [X/x]Z.

Proof
X ≡ Y(λxy1 . . . yn.Z) (whiteboard).

Lambda Calculus 22/64

Leftmost Reduction

Idea
Proving that a given term has no normal form.

Definition
A contraction in X is an order triple ⟨X, R, Y ⟩ where R is an redex in X and Y is the result
of contracting R in X.

Notation
A contraction ⟨X, R, Y ⟩ is denoted by X ▷R Y .

Lambda Calculus 23/64

Leftmost Reduction

Example
Two contractions in (λx.(λy.yx)z)v.
(i) (λx.(λy.yx)z)v ▷R (λy.yv)z, where R ≡ (λx.(λy.yx)z)v.
(ii) (λx.(λy.yx)z)v ▷R (λx.zx)v, where R ≡ (λy.yx)z.

Lambda Calculus 24/64

Leftmost Reduction

Definition
A reduction ρ is a finite or infinite sequence of contractions separated by α-conversions

X1 ▷R1 Y1 ≡α X2 ▷R2 . . .

Question
Given an initial term X, there is some way of choosing a reduction that will terminate if X has
a normal form?

Lambda Calculus 25/64

Leftmost Reduction

Definition
A redex is outermost (or maximal) iff it is not contained in any other redex.

Definition
A (outermost) redex is the leftmost outermost redex (or leftmost maximal redex) iff it is
the leftmost of the outermost redexes.

Definition
A reduction has maximal length iff either it is infinite or its last term contains no redexes.

Lambda Calculus 26/64

Leftmost Reduction

Definition
The leftmost reduction (or normal reduction) of a term X1 is a reduction

X1 ▷R1 X2 ▷R2 X3 ▷R3 . . .

where
(i) Every Ri is the leftmost outermost redex of Xi.
(ii) The reduction has maximal length.

Lambda Calculus 27/64

Leftmost Reduction

Example
The leftmost reduction for (λy.a)Ω, where Ω ≡ (λx.xx)(λx.xx).

(λy.a)Ω ▷β a.

Lambda Calculus 28/64

Leftmost Reduction

Example
The leftmost reduction for X(Y Z), where X ≡ λx.xx, Y ≡ λy.yy and Z ≡ λz.zz.

X(Y Z) ▷β (Y Z)(Y Z)
▷β (ZZ)(Y Z)
...

Lambda Calculus 29/64

Leftmost Reduction

Theorem (Standardization theorem (or leftmost reduction theorem))
If a term X has a normal form X∗, then the leftmost reduction of X is finite and ends at X∗.

Lambda Calculus 30/64

Lambda Calculus and Inconsistencies

Lambda Calculus and Inconsistencies

Paradoxes
Curry’s paradox (λ-calculus + logic)
Rusell’s paradox (λ-calculus + set theory)

Lambda Calculus and Inconsistencies 32/64

Curry’s Paradox

Introduction
Informally, Curry’s paradox is obtained in a deductive theory formed by λ-calculus + logic
formulated by Church [1932, 1933].

Notation
In our presentation of Curry paradox equality means β-equality, that is, A = B := A =β B.

Theorem (Curry’s paradox)
Any proposition is probable in Church’s theory

Lambda Calculus and Inconsistencies 33/64

Curry’s Paradox
Proof (Rosser [1984, p. 340])
Suppose we have two familiar logical principles:

⊢ P ⊃ P (8)
⊢ (P ⊃ (P ⊃ Q)) ⊃ (P ⊃ Q) (9)

together with modus ponens (if P and P ⊃ Q, then Q).

Let A be an arbitrary proposition. We construct a X such that

⊢ X = X ⊃ A (10)

To do this, we take F = λx.x ⊃ A in the fixed-point theorem. By (8), we get

⊢ X ⊃ X.

Continued on next slide
Lambda Calculus and Inconsistencies 34/64

Curry’s Paradox

Proof (continuation).
Applying (10) to the second Φ gives

⊢ X ⊃ (X ⊃ A).

By (9) and modus ponens, we get
⊢ X ⊃ A.

By (10) reversed, we get
⊢ X.

By modus ponens and the last two formulas, we get

⊢ A.

Lambda Calculus and Inconsistencies 35/64

Curry’s Paradox

Church’s theory
Adding to the set of λ-terms a constant ⊃, the sub-theory from Church’s theory required for
proving Curry’s paradox is defined by the following inference rules [Barendregt 2014], where Γ
is a set of λ-terms:

hyp (if A ∈ Γ)Γ, A ⊢ A

Γ, A ⊢ B
⊃IΓ ⊢ A ⊃ B

Γ ⊢ A ⊃ B Γ ⊢ A ⊃EΓ ⊢ B

Γ ⊢ A A = B substΓ ⊢ B

Lambda Calculus and Inconsistencies 36/64

Curry’s Paradox

Proof (Barendregt [2014])
Using the previous inference rules, we prove Curry’s paradox. Let A be an arbitrary proposition
and let X = X ⊃ A by the fixed-point theorem.

Initially, we prove ⊢ X ⊃ A.

X ⊢ X X = X ⊃ A subst
X ⊢ X ⊃ A X ⊢ X ⊃E

X ⊢ A ⊃I⊢ X ⊃ A

And then we prove ⊢ A.

⊢ X ⊃ A
⊢ X ⊃ A X ⊃ A = X subst⊢ X ⊃E⊢ A

Lambda Calculus and Inconsistencies 37/64

Rusell’s Paradox

See [Paulson 2000, § 4.6].

Lambda Calculus and Inconsistencies 38/64

Encoding Data in the Lambda Calculus

Encoding Data in the Lambda Calculus
From [Paulson 2000, Ch. 3].

Booleans

true ≡ λxy.x

false ≡ λxy.y

if ≡ λpxy.pxy

where

if true M N =β M

if false M N =β N

Encoding Data in the Lambda Calculus 40/64

Encoding Data in the Lambda Calculus

Ordered pairs

pair ≡ λxyf.fxy

fst ≡ λp.p true
snd = λp.p false

where

fst (pair M N) =β M

snd (pair M N) =β N

Encoding Data in the Lambda Calculus 41/64

Encoding Data in the Lambda Calculus

Natural numbers
Notation:

XnY ≡ X(X(. . . (X︸ ︷︷ ︸
n ‘X’s

Y) . . .)) if n ≥ 1,

X0Y ≡ Y.

The Church numerals:
n ≡ λfx.fnx

Encoding Data in the Lambda Calculus 42/64

Encoding Data in the Lambda Calculus
Some operations:

add ≡ λmnfx.mf(nfx)
mult ≡ λmnfx.m(nf)x

isZero ≡ λn.n(λx.false) true

where

add m n =β m + n

mult m n =β m × n

isZero 0 =β true
isZero n + 1 =β false

Encoding Data in the Lambda Calculus 43/64

Recursion Using Fixed-Points

Example
Let Y be a fixed-point combinator. An informally example using the factorial
function [Peyton Jones 1987].

fac ≡ λn.if n = 0 then 1 else n ∗ fac (n − 1)
fac ≡ λn.(. . . fac . . .)
fac ≡ (λfn.(. . . f . . .)) fac

h ≡ λfn.(. . . f . . .) - - not recursive!
fac ≡ h fac - - fac is a fixed-point of h!

fac ≡ Y h

Encoding Data in the Lambda Calculus 44/64

Recursion Using Fixed-Points

Example (cont.)

fac 1 ≡ Y h 1
=β h(Y h) 1
≡ (λfn.(. . . f . . .))(Y h) 1
▷β if 1 = 0 then 1 else 1 ∗ (Y h 0)
▷β 1 ∗ (Y h 0)
=β 1 ∗ (h(Y h) 0)
≡ 1 ∗ ((λfn.(. . . f . . .))(Y h)0)
▷β 1 ∗ (if 0 = 0 then 1 else 1 ∗ (Y h (−1)))
▷β 1 ∗ 1
▷β 1

Encoding Data in the Lambda Calculus 45/64

Representing the Computable Functions

Representability
Let φ be a partial function φ : Nn → N. A term X represents φ iff

φ(m1, . . . , mn) = p ⇒ Xm1 . . . mn =β p,

φ(m1, . . . , mn) does not exits ⇒ Xm1 . . . mn has no nf.

Example
The successor function succ(n) = n + 1 is represented by

succ ≡ λnfx.f(nfx)

Theorem (Representation of Turing-computable functions)
In λ-calculus every Turing-computable function can be represented by a combinator.

Encoding Data in the Lambda Calculus 46/64

Undecidability
Gödel numbering

: λ-terms → N
#xi = 2i

#(λxi.M) = 3i5#M

#(MN) = 7#M 11#N

Notation: ⌜M⌝ = #M

Theorem (Double fixed-point theorem)
∀F∃X.F⌜X⌝ =β X.

Proof
Whiteboard.

Encoding Data in the Lambda Calculus 47/64

Undecidability

Theorem (Rice’s theorem for the λ-calculus)
Let A ⊂ λ-terms such as A is non-trivial (i.e. A ̸= ∅, A ̸= λ-terms). Suppose that A is closed
under =β (i.e. M ∈ A, M =β N ⇒ N ∈ A). Then A is no recursive, that is, #A = {#M |
M ∈ A} is not recursive.

Proof
Whiteboard (see [Barendregt 1990]).

Theorem
The set NF = {M | M has a normal form} is not recursive.

Proof.
The set NF is not trivial and it is closed under =β.

Encoding Data in the Lambda Calculus 48/64

ISWIM

ISWIM: Lambda Calculus as a Programming Language

ISWIM: If you See What I Mean
Landin [1966]

ISWIM 50/64

ISWIM Features
(From [Paulson 2000, Ch. 3])

Simple declaration
let x = M in N ≡ (λx.N)M

Example
let n = 0 in succ n

let m = 0 in (let n = 1 in add m n)

ISWIM 51/64

ISWIM Features

Function declaration
let fx1 . . . xk = M in N ≡ (λf.N)(λx1 . . . xk.M)

Example
let succ n = λfx.f(nfx) in succ 0

ISWIM 52/64

ISWIM Features

Recursive declaration
letrec fx1 . . . xk = M in N ≡ (λf.N)(Y(λfx1 . . . xk.M))

Example
letrec fac n = if (n == 0) 1 (n ∗ fac(n − 1)) in fac 0

ISWIM 53/64

ISWIM Features

Pairs
(M, N) : pair constructor
fst, snd : projections
let λ(x, y).E ≡ λz.(λxy.E)(fst z)(snd z)

Example
let (x, y) = (2, 3) in add x y

ISWIM 54/64

Formal Theories

The Formal Theory λβ of β-Equality

Formulas
M = N , where M, N ∈ λ-terms.

Axiom-schemes

(α) λx.M = λy.[y/x]M if y ∈ FV(M),
(β) (λx.M)N = [N/x]M,

(ρ) M = M.

Formal Theories 56/64

The Formal Theory λβ of β-Equality

Rules of inference

M = M ′
(µ)

NM = NM ′

M = M ′
(ν)

MN = M ′N

M = M ′
(ξ)

λx.M = λx.M ′

M = N N = P (τ)
M = P

M = N (σ)
N = M

Formal Theories 57/64

The Formal Theory λβ of β-Equality

Notation
If there is a deduction of B from the assumptions A1, . . . , An in λβ is denoted by

λβ, A1, . . . , An ⊢ B.

Notation
If the formula B is a theorem in λβ is denoted by

λβ ⊢ B.

Remark
λβ is a equational theory and it is a logic-free theory (there are not logical connectives or
quantifiers in its formulae).

Formal Theories 58/64

The Formal Theory λβ of β-Equality

Example
Let M and N be two closed terms, then λβ ⊢ (λxy.x)MN = M .

(λx.(λy.x))M = [M/x]λy.x ≡ λy.M
(ν)

(λx.(λy.x))MN = (λy.M)N (λy.M)N = [N/y]M ≡ M
(τ)

(λx.(λy.x))MN = M

Formal Theories 59/64

The Formal Theory λβ of β-Equality

Theorem

M =β N ⇐⇒ λβ ⊢ M = N.

Formal Theories 60/64

The Formal Theory λβ of β-Reduction
Similar to the formal theory of β-equality, but:
(i) Formulas: M ▷β N .
(ii) To change ‘=’ by ‘▷β’.
(iii) Remove the rule (σ).

Theorem

M ▷β N ⇐⇒ λβ ⊢ M ▷β N.

Remark
Formal theories for combinatory logic.

Remark
λβ is not a first-order theory.

Formal Theories 61/64

References

References
Barendregt, H. P. [1984] (2004). The Lambda Calculus. Its Syntax and Semantics. Revised
edition, 6th impression. Vol. 103. Studies in Logic and the Foundations of Mathematics. Elsevier
(cit. on p. 3).
Barendregt, Henk (1990). Functional Programming and Lambda Calculus. In: Handbook of
Theoretical Computer Science. Ed. by van Leeuwen, J. Vol. B. Formal Models and Semantics.
MIT Press. Chap. 7. doi: 10.1016/B978-0-444-88074-1.50012-3 (cit. on p. 48).
— (2014). The Impact of the Lambda Calculus. (Slides). url:
http://www.cs.ru.nl/~henk/CT271014.pdf (visited on 12/06/2019) (cit. on pp. 36, 37).
Barendregt, Henk and Barendsen, Erik (2000). Introduction to Lambda Calculus. Revisited
edition, Mar. 2000 (cit. on p. 3).
Church, Alonzo (1932). A Set of Postulates for the Foundation of Logic. Annals of Mathematics
33.2, pp. 346–366. doi: 10.2307/1968337 (cit. on p. 33).
— (1933). A Set of Postulates for the Foundation of Logic (Second Paper). Annals of
Mathematics 34.4, pp. 839–864. doi: 10.2307/1968702 (cit. on p. 33).

https://doi.org/10.1016/B978-0-444-88074-1.50012-3
http://www.cs.ru.nl/~henk/CT271014.pdf
https://doi.org/10.2307/1968337
https://doi.org/10.2307/1968702

References
Hindley, J. R. and Seldin, J. (2008). Lambda-Calculus and Combinators. An Introduction.
Cambridge University Press (cit. on p. 3).
Landin, P. J. (1966). The Next 700 Programming Languages. Communications of the ACM 9.3,
pp. 157–166. doi: 10.1145/365230.365257 (cit. on p. 50).
Paulson, Lawrence C. (2000). Foundations of Functional Programming. Lecture notes. url:
http://www.cl.cam.ac.uk/~lp15/ (visited on 10/06/2020) (cit. on pp. 3, 38, 40, 51).
Peyton Jones, Simon L. (1987). The Implementation of Functional Programming Languages.
Prentice-Hall International (cit. on p. 44).
Rosser, J. Barkley (1984). Highlights of the History of Lambda-Calculus. Annals of the History of
Computing 6.4, pp. 337–349. doi: 10.1109/MAHC.1984.10040 (cit. on p. 34).

https://doi.org/10.1145/365230.365257
http://www.cl.cam.ac.uk/~lp15/
https://doi.org/10.1109/MAHC.1984.10040

	Introduction
	Lambda Calculus
	Lambda Calculus and Inconsistencies
	Encoding Data in the Lambda Calculus
	ISWIM
	Formal Theories
	References

