Lambda Calculus

Andrés Sicard-Ramírez

Universidad EAFIT
Semester 2010-2

Introduction

Bibliography

- Textbook: Hindley, J. R. and Seldin, J. [2008]. Lambda-Calculus and Combinators. An Introduction. Cambridge University Press.
- Barendregt, Henk and Barendsen, Erik [2000]. Introduction to Lambda Calculus. Revisited edition, Mar. 2000.
- Barendregt, H. P. [1984] [2004]. The Lambda Calculus. Its Syntax and Semantics. Revised edition, 6th impression. Vol. 103. Studies in Logic and the Foundations of Mathematics. Elsevier.
- Paulson, Lawrence C. [2000]. Foundations of Functional Programming. Lecture notes. URL: http://www.cl.cam.ac.uk/~1p15/ [visited on 10/06/2020].

Lambda Calculus

What is the Lambda Calculus?

Invented by Alonzo Church (around 1930s).

- The goal was to use it in the foundation of mathematics. Intended for studying functions and recursion.
- Computability model.
- Model of untyped functional programming languages.

Introduction

- λ-calculus is a collection of several formal systems
- λ-notation
- Anonymous functions
- Currying

Introduction

Definition (λ-terms)

The set of λ-terms is inductively defined by

$$
\begin{array}{rlrl}
v \in V & \Rightarrow v \in \lambda \text {-terms } & & \text { (atom) } \\
c \in C & \Rightarrow c \in \lambda \text {-terms } & \text { (atom) } \\
M, N \in \lambda \text {-terms } & \Rightarrow(M N) \in \lambda \text {-terms } & & \text { (application) } \\
M \in \lambda \text {-terms, } x \in V & \Rightarrow(\lambda x . M) \in \lambda \text {-terms } & & \text { (abstraction) }
\end{array}
$$

where V / C is a set of variables/constants.

Introduction

Conventions and syntactic sugar

- $M \equiv N$ means the syntactic identity
- Application associates to the left $M N_{1} N_{2} \ldots N_{k}$ means $\left(\ldots\left(\left(M N_{1}\right) N_{2}\right) \ldots N_{k}\right)$
- Application has higher precedence $\lambda x . P Q$ means $(\lambda x .(P Q))$
- $\lambda x_{1} x_{2} \ldots x_{n} \cdot M$ means $\left(\lambda x_{1} \cdot\left(\lambda x_{2} \cdot\left(\ldots\left(\lambda x_{n} \cdot M\right) \ldots\right)\right)\right)$

Example

$(\lambda x y z \cdot x z(y z)) u v w \equiv((((\lambda x \cdot(\lambda y \cdot(\lambda z \cdot((x z)(y z))))) u) v) w)$.

Term-Structure and Substitution

Substitution ([$N / x] M$)

The result of substituting N for every free occurrence of x in M, and changing bound variables to avoid clashes.

$$
\begin{array}{llrl}
{[N / x] x} & \equiv N ; & & \\
{[N / x] a} & \equiv a, & \text { for all atoms } a \not \equiv x ; \\
{[N / x](P Q)} & \equiv([N / x] P)([N / x] Q) ; & & \\
{[N / x](\lambda x \cdot P) \equiv \lambda x \cdot P ;} & & \\
{[N / x](\lambda y \cdot P)} & \equiv \lambda y \cdot P, & & y x, x \notin \mathrm{FV}(P) ; \\
{[N / x](\lambda y \cdot P)} & \equiv \lambda y \cdot[N / x] P, & & y \not \equiv x, x \in \mathrm{FV}(P), y \notin \mathrm{FV}(N) ; \\
{[N / x](\lambda y \cdot P)} & \equiv \lambda z \cdot[N / x][z / y] P, & & y \not \equiv x, x \in \mathrm{FV}(P), y \in \mathrm{FV}(N) ;
\end{array}
$$

where in the last equation, z is chosen to be a variable $\notin \mathrm{FV}(N P)$.

Term-Structure and Substitution

Example

$[(\lambda y . v y) / x](y(\lambda v . x v)) \equiv y(\lambda z .(\lambda y . v y) z)($ with $z \not \equiv v, y, x)$.

Term-Structure and Substitution

α-conversion or changed of bound variables
Replace $\lambda x . M$ by $\lambda y .[y / x] M(y \notin \mathrm{FV}(M))$.
α-congruence ($P \equiv{ }_{\alpha} Q$)
P is changed to Q by a finite (perhaps empty) series of α-conversions.
Example
Whiteboard.
Theorem
The relation \equiv_{α} is an equivalence relation.

Beta-Reduction

```
\beta-contraction (·}\mp@subsup{\triangleright}{1\beta}{}\cdot
(\lambdax.M)N: }\beta\mathrm{ -redex
[N/x]M: contractum
(\lambdax.M)N \triangleright 的 [N/x]M
P}\mp@subsup{\triangleright}{1\beta}{}Q:\mathrm{ Replace an occurrence of ( }\lambdax.M)N\mathrm{ in }P\mathrm{ by [N/x]M.
Example
Whiteboard.
```


Beta-Reduction

```
\beta-reduction ( }P\mp@subsup{\triangleright}{\beta}{}Q
```

P is changed to Q by a finite (perhaps empty) series of β-contractions and α-conversions.
Example
$(\lambda x .(\lambda y . y x) z) v \triangleright_{\beta} z v$.

Beta-Reduction

β-normal form
A term which contains no β-redex.
β-nf: The set of all β-normal forms.
Example
Whiteboard.

Beta-Reduction

Theorem (The Church-Rosser theorem for \triangleright_{β} (the diamond property))

$$
\frac{P \triangleright_{\beta} M \quad P \triangleright_{\beta} N}{\exists T . M \triangleright_{\beta} T \wedge N \triangleright_{\beta} T}
$$

Corollary

If P has a β-normal form, it is unique modulo \equiv_{α}; that is, if P has β-normal forms M and N, then $M \equiv{ }_{\alpha} N$.

Proof
Whiteboard.

Beta-Equality

β-equality or β-convertibility $\left(P={ }_{\beta} Q\right)$
Exist P_{0}, \ldots, P_{n} such that

- $P_{0} \equiv P$
- $P_{n} \equiv Q$
- $(\forall i \leq n-1)\left(P_{i} \triangleright_{1 \beta} P_{i+1} \quad \vee \quad P_{i+1} \triangleright_{1 \beta} P_{i} \quad \vee \quad P_{i} \equiv_{\alpha} P_{i+1}\right)$

Theorem (Church-Rosser theorem for $=_{\beta}$)

$$
\frac{P={ }_{\beta} Q}{\exists T \cdot P \triangleright_{\beta} T \wedge Q \triangleright_{\beta} T}
$$

Proof

Whiteboard.

Beta-Equality

Corollary
If $P, Q \in \beta$-nf and $P={ }_{\beta} Q$, then $P \equiv{ }_{\alpha} Q$.

Corollary

The relation $={ }_{\beta}$ is non-trivial (not all terms are β-convertible to each other).

Proof
Whiteboard.

Fixed-Point Combinators

Idea
For every term F there is a term X such

$$
F X={ }_{\beta} X
$$

The term X is called a fixed-point of F.

Fixed-Point Combinators

Theorem
$\forall F \exists X . F X={ }_{\beta} X$.

Fixed-Point Combinators

Theorem
$\forall F \exists X . F X={ }_{\beta} X$.
Proof.
Let $W \equiv \lambda x . F(x x)$, and let $X \equiv W W$. Then

$$
\begin{aligned}
X & \equiv(\lambda x \cdot F(x x)) W \\
& ={ }_{\beta} F(W W) \\
& \equiv F X
\end{aligned}
$$

Fixed-Point Combinators

Fixed-point combinator
A fixed-point combinator is any combinator Y such that $\mathrm{Y} F={ }_{\beta} F(\mathrm{Y} F)$, for all terms F.
Theorem (Turing)
The term $\mathrm{Y} \equiv U U$, where $U \equiv \lambda u x \cdot x(u u x)$ is a fixed-point combinator.
Proof
Whiteboard.
Theorem (Curry and Rosenbloom)
The term $\mathrm{Y} \equiv \lambda f . V V$, where $V \equiv \lambda x . f(x x)$ is a fixed-point combinator.
Proof
Whiteboard.

Fixed-Point Combinators

Corollary
For every term Z and $n \geq 0$, the equation

$$
x y_{1} \ldots y_{n}=Z
$$

can be solved for x. That is, there is a term X such that

$$
X y_{1} \ldots y_{n}={ }_{\beta}[X / x] Z
$$

Proof
$X \equiv \mathrm{Y}\left(\lambda x y_{1} \ldots y_{n} . Z\right)$ (whiteboard).

Leftmost Reduction

Idea
Proving that a given term has no normal form.

Definition

A contraction in X is an order triple $\langle X, R, Y\rangle$ where R is an redex in X and Y is the result of contracting R in X.

Notation
A contraction $\langle X, R, Y\rangle$ is denoted by $X \triangleright_{R} Y$.

Leftmost Reduction

Example

Two contractions in $(\lambda x .(\lambda y . y x) z) v$.
(i) $(\lambda x \cdot(\lambda y \cdot y x) z) v \triangleright_{R}(\lambda y \cdot y v) z$, where $R \equiv(\lambda x \cdot(\lambda y \cdot y x) z) v$.
(ii) $(\lambda x .(\lambda y \cdot y x) z) v \triangleright_{R}(\lambda x . z x) v$, where $R \equiv(\lambda y \cdot y x) z$.

Leftmost Reduction

Definition

A reduction ρ is a finite or infinite sequence of contractions separated by α-conversions

$$
X_{1} \triangleright_{R_{1}} Y_{1} \equiv_{\alpha} X_{2} \triangleright_{R_{2}} \ldots
$$

Question

Given an initial term X, there is some way of choosing a reduction that will terminate if X has a normal form?

Leftmost Reduction

Definition

A redex is outermost (or maximal) iff it is not contained in any other redex.

Definition

A (outermost) redex is the leftmost outermost redex (or leftmost maximal redex) iff it is the leftmost of the outermost redexes.

Definition

A reduction has maximal length iff either it is infinite or its last term contains no redexes.

Leftmost Reduction

Definition

The leftmost reduction (or normal reduction) of a term X_{1} is a reduction

$$
X_{1} \triangleright_{R_{1}} X_{2} \triangleright_{R_{2}} X_{3} \triangleright_{R_{3}} \ldots
$$

where
(i) Every R_{i} is the leftmost outermost redex of X_{i}.
(ii) The reduction has maximal length.

Leftmost Reduction

Example

The leftmost reduction for $(\lambda y . a) \Omega$, where $\Omega \equiv(\lambda x . x x)(\lambda x . x x)$.

$$
(\lambda y . a) \Omega \triangleright_{\beta} a .
$$

Leftmost Reduction

Example

The leftmost reduction for $X(Y Z)$, where $X \equiv \lambda x . x x, Y \equiv \lambda y . y y$ and $Z \equiv \lambda z . z z$.

$$
\begin{array}{r}
X(Y Z) \triangleright_{\beta}(\underline{Y Z})(Y Z) \\
\triangleright_{\beta}(\underline{Z Z})(Y Z)
\end{array}
$$

Leftmost Reduction

Theorem (Standardization theorem (or leftmost reduction theorem))
If a term X has a normal form X^{*}, then the leftmost reduction of X is finite and ends at X^{*}.

Lambda Calculus and Inconsistencies

Lambda Calculus and Inconsistencies

Paradoxes

- Curry's paradox (λ-calculus $+\operatorname{logic}$)
- Rusell's paradox (λ-calculus + set theory $)$

Curry's Paradox

Introduction

Informally, Curry's paradox is obtained in a deductive theory formed by λ-calculus + logic formulated by Church [1932, 1933].

Notation
In our presentation of Curry paradox equality means β-equality, that is, $A=B:=A={ }_{\beta} B$.
Theorem (Curry's paradox)
Any proposition is probable in Church's theory

Curry's Paradox

Proof (Rosser [1984, p. 340])
Suppose we have two familiar logical principles:

$$
\begin{align*}
& \vdash P \supset P \tag{8}\\
& \vdash(P \supset(P \supset Q)) \supset(P \supset Q) \tag{9}
\end{align*}
$$

together with modus ponens (if P and $P \supset Q$, then Q).
Let A be an arbitrary proposition. We construct a X such that

$$
\begin{equation*}
\vdash X=X \supset A \tag{10}
\end{equation*}
$$

To do this, we take $F=\lambda x . x \supset A$ in the fixed-point theorem. By (8), we get

$$
\vdash X \supset X
$$

Curry's Paradox

Proof (continuation).
Applying (10) to the second Φ gives

$$
\vdash X \supset(X \supset A)
$$

By (9) and modus ponens, we get

$$
\vdash X \supset A
$$

By (10) reversed, we get

$$
\vdash X
$$

By modus ponens and the last two formulas, we get

$$
\vdash A .
$$

Curry's Paradox

Church's theory
Adding to the set of λ-terms a constant \supset, the sub-theory from Church's theory required for proving Curry's paradox is defined by the following inference rules [Barendregt 2014], where Γ is a set of λ-terms:

$$
\begin{gathered}
\frac{\Gamma, A \vdash A}{} \text { hyp } \quad(\text { if } A \in \Gamma) \\
\frac{\Gamma, A \vdash B}{\Gamma \vdash A \supset B} \supset \mathrm{I} \\
\\
\frac{\Gamma \vdash A \quad A=B}{\Gamma \vdash B} \text { subst }
\end{gathered}
$$

Curry's Paradox

Proof (Barendregt [2014])

Using the previous inference rules, we prove Curry's paradox. Let A be an arbitrary proposition and let $X=X \supset A$ by the fixed-point theorem.

Initially, we prove $\vdash X \supset A$.

$$
\frac{X \vdash X \quad X=X \supset A}{\frac{X \vdash X \supset A}{\vdash} \text { subst } \quad X \vdash X} \supset \mathrm{E}
$$

And then we prove $\vdash A$.

$$
\frac{\vdash X \supset A}{} \frac{\vdash X \supset A \quad X \supset A=X}{\vdash A} \text { subst }
$$

Rusell's Paradox

See [Paulson 2000, § 4.6].

Encoding Data in the Lambda Calculus

Encoding Data in the Lambda Calculus

From [Paulson 2000, Ch. 3].

Booleans

$$
\begin{aligned}
\text { true } & \equiv \lambda x y \cdot x \\
\text { false } & \equiv \lambda x y \cdot y \\
\text { if } & \equiv \lambda p x y \cdot p x y
\end{aligned}
$$

where

$$
\begin{aligned}
& \text { if true } M N={ }_{\beta} M \\
& \text { if false } M N={ }_{\beta} N
\end{aligned}
$$

Encoding Data in the Lambda Calculus

Ordered pairs

$$
\begin{aligned}
\text { pair } & \equiv \lambda x y f \cdot f x y \\
\text { fst } & \equiv \lambda p \cdot p \text { true } \\
\text { snd } & =\lambda p \cdot p \text { false }
\end{aligned}
$$

where

$$
\begin{aligned}
\text { fst }(\text { pair } M N) & ={ }_{\beta} M \\
\text { snd }(\text { pair } M N) & ={ }_{\beta} N
\end{aligned}
$$

Encoding Data in the Lambda Calculus

Natural numbers
Notation:

$$
\begin{aligned}
& X^{n} Y \equiv \underbrace{X(X(\ldots(X}_{n^{\prime} X^{\prime} \mathrm{s}} Y) \ldots)) \quad \text { if } n \geq 1 \\
& X^{0} Y \equiv Y .
\end{aligned}
$$

The Church numerals:

$$
\bar{n} \equiv \lambda f x . f^{n} x
$$

Encoding Data in the Lambda Calculus

Some operations:

$$
\begin{aligned}
\text { add } & \equiv \lambda m n f x \cdot m f(n f x) \\
\text { mult } & \equiv \lambda m n f x \cdot m(n f) x \\
\text { isZero } & \equiv \lambda n \cdot n(\lambda x \cdot \text { false }) \text { true }
\end{aligned}
$$

where

$$
\begin{aligned}
\text { add } \bar{m} \bar{n} & ={ }_{\beta} \overline{m+n} \\
\text { mult } \bar{m} \bar{n} & ={ }_{\beta} \overline{m \times n}
\end{aligned}
$$

$$
\begin{aligned}
\text { isZero } \overline{0} & ={ }_{\beta} \text { true } \\
\text { isZero } \overline{n+1} & ={ }_{\beta} \text { false }
\end{aligned}
$$

Recursion Using Fixed-Points

Example

Let Y be a fixed-point combinator. An informally example using the factorial function [Peyton Jones 1987].

$$
\begin{aligned}
\mathrm{fac} & \equiv \lambda n . \text { if } n=0 \text { then } 1 \text { else } n * \mathrm{fac}(n-1) \\
\mathrm{fac} & \equiv \lambda n .(\ldots \mathrm{fac} \ldots) \\
\mathrm{fac} & \equiv(\lambda f n .(\ldots f \ldots)) \mathrm{fac} \\
h & \equiv \lambda f n .(\ldots f \ldots) \quad-\text { not recursive! } \\
\mathrm{fac} & \equiv h \mathrm{fac} \quad-\mathrm{fac} \text { is a fixed-point of } h! \\
\mathrm{fac} & \equiv \mathrm{Y} h
\end{aligned}
$$

Recursion Using Fixed-Points

Example (cont.)

$$
\begin{aligned}
\text { fac } 1 & \equiv \mathrm{Y} h 1 \\
& ={ }_{\beta} h(\mathrm{Y} h) 1 \\
& \equiv(\lambda f n .(\ldots f \ldots))(\mathrm{Y} h) 1 \\
& \triangleright_{\beta} \text { if } 1=0 \text { then } 1 \text { else } 1 *(\mathrm{Y} h 0) \\
& \triangleright_{\beta} 1 *(\mathrm{Y} h 0) \\
& ={ }_{\beta} 1 *(h(\mathrm{Y} h) 0) \\
& \equiv 1 *((\lambda f n .(\ldots f \ldots))(\mathrm{Y} h) 0) \\
& \triangleright_{\beta} 1 *(\text { if } 0=0 \text { then } 1 \text { else } 1 *(\mathrm{Y} h(-1))) \\
& \triangleright_{\beta} 1 * 1 \\
& \triangleright_{\beta} 1
\end{aligned}
$$

Representing the Computable Functions

Representability
Let φ be a partial function $\varphi: \mathbb{N}^{n} \rightarrow \mathbb{N}$. A term X represents φ iff

$$
\begin{aligned}
\varphi\left(m_{1}, \ldots, m_{n}\right)=p & \Rightarrow X \overline{m_{1}} \ldots \overline{m_{n}}={ }_{\beta} \bar{p} \\
\varphi\left(m_{1}, \ldots, m_{n}\right) \text { does not exits } & \Rightarrow X \overline{m_{1}} \ldots \overline{m_{n}} \text { has no nf. }
\end{aligned}
$$

Example

The successor function $\operatorname{succ}(n)=n+1$ is represented by

$$
\text { succ } \equiv \lambda n f x . f(n f x)
$$

Theorem (Representation of Turing-computable functions)
In λ-calculus every Turing-computable function can be represented by a combinator.

Undecidability

Gödel numbering

$$
\begin{aligned}
\#: & \lambda \text {-terms } \rightarrow \mathbb{N} \\
\# x_{i} & =2^{i} \\
\#\left(\lambda x_{i} \cdot M\right) & =3^{i} 5^{\# M} \\
\#(M N) & =7^{\# M} 11^{\# N}
\end{aligned}
$$

Notation: $\ulcorner M\urcorner=\overline{\# M}$
Theorem (Double fixed-point theorem)
$\forall F \exists X . F\ulcorner X\urcorner={ }_{\beta} X$.
Proof
Whiteboard.

Undecidability

Theorem (Rice's theorem for the λ-calculus)
Let $A \subset \lambda$-terms such as A is non-trivial (i.e. $A \neq \emptyset, A \neq \lambda$-terms). Suppose that A is closed under $={ }_{\beta}$ (i.e. $M \in A, M={ }_{\beta} N \Rightarrow N \in A$). Then A is no recursive, that is, $\# A=\{\# M \mid$ $M \in A\}$ is not recursive.

Proof
Whiteboard (see [Barendregt 1990]).

Theorem

The set $N F=\{M \mid M$ has a normal form $\}$ is not recursive.
Proof.
The set $N F$ is not trivial and it is closed under $={ }_{\beta}$.

ISWIM

ISWIM: Lambda Calculus as a Programming Language

- ISWIM: If you See What I Mean
- Landin [1966]

ISWIM Features

(From [Paulson 2000, Ch. 3])
Simple declaration
let $x=M$ in $N \equiv(\lambda x . N) M$
Example

- let $n=\overline{0}$ in succ n
- let $m=\overline{0}$ in (let $n=\overline{1}$ in add $m n$)

ISWIM Features

Function declaration
let $f x_{1} \ldots x_{k}=M$ in $N \equiv(\lambda f . N)\left(\lambda x_{1} \ldots x_{k} \cdot M\right)$
Example
let succ $n=\lambda f x . f(n f x)$ in succ $\overline{0}$

ISWIM Features

Recursive declaration
letrec $f x_{1} \ldots x_{k}=M$ in $N \equiv(\lambda f . N)\left(\mathrm{Y}\left(\lambda f x_{1} \ldots x_{k} \cdot M\right)\right)$
Example
letrec fac $n=$ if $(n==0) 1(n * \operatorname{fac}(n-1))$ in fac 0

ISWIM Features

Pairs

(M, N) : pair constructor
fst, snd : projections
let $\lambda(x, y) \cdot E \quad \equiv \quad \lambda z \cdot(\lambda x y \cdot E)(\mathrm{fst} z)(\operatorname{snd} z)$
Example
let $(x, y)=(\overline{2}, \overline{3})$ in add $x y$

Formal Theories

The Formal Theory $\lambda \beta$ of β-Equality

Formulas

$M=N$, where $M, N \in \lambda$-terms.

Axiom-schemes

$$
\begin{aligned}
& (\alpha) \quad \lambda x \cdot M=\lambda y \cdot[y / x] M \quad \text { if } y \in \mathrm{FV}(M), \\
& (\beta) \quad(\lambda x \cdot M) N=[N / x] M, \\
& (\rho) \quad M=M
\end{aligned}
$$

The Formal Theory $\lambda \beta$ of β-Equality

Rules of inference

$$
\begin{array}{ccc}
\frac{M=M^{\prime}}{N M=N M^{\prime}}(\mu) & \frac{M=M^{\prime}}{\lambda x \cdot M=\lambda x \cdot M^{\prime}}(\xi) & \frac{M=N}{N=M}(\sigma) \\
\frac{M=M^{\prime}}{M N=M^{\prime} N}(\nu) & \frac{M=N \quad N=P}{M=P}(\tau) &
\end{array}
$$

The Formal Theory $\lambda \beta$ of β-Equality

Notation

If there is a deduction of B from the assumptions A_{1}, \ldots, A_{n} in $\lambda \beta$ is denoted by

$$
\lambda \beta, A_{1}, \ldots, A_{n} \vdash B .
$$

Notation

If the formula B is a theorem in $\lambda \beta$ is denoted by

$$
\lambda \beta \vdash B .
$$

Remark

$\lambda \beta$ is a equational theory and it is a logic-free theory (there are not logical connectives or quantifiers in its formulae).

The Formal Theory $\lambda \beta$ of β-Equality

Example

Let M and N be two closed terms, then $\lambda \beta \vdash(\lambda x y \cdot x) M N=M$.

$$
\frac{(\lambda x \cdot(\lambda y \cdot x)) M=[M / x] \lambda y \cdot x \equiv \lambda y \cdot M}{\frac{(\lambda x \cdot(\lambda y \cdot x)) M N=(\lambda y \cdot M) N}{(\lambda x \cdot(\lambda y \cdot x)) M N=M} \quad(\lambda y \cdot M) N=[N / y] M \equiv M}(\tau)
$$

The Formal Theory $\lambda \beta$ of β-Equality

Theorem

$$
M={ }_{\beta} N \Longleftrightarrow \lambda \beta \vdash M=N .
$$

The Formal Theory $\lambda \beta$ of β-Reduction

Similar to the formal theory of β-equality, but:
(i) Formulas: $M \triangleright_{\beta} N$.
(ii) To change ' $=$ ' by ' \triangleright_{β} '.
(iii) Remove the rule (σ).

Theorem

$$
M \triangleright_{\beta} N \Longleftrightarrow \lambda \beta \vdash M \triangleright_{\beta} N .
$$

Remark

Formal theories for combinatory logic.
Remark
$\lambda \beta$ is not a first-order theory.

References

References

Barendregt, H. P. [1984] (2004). The Lambda Calculus. Its Syntax and Semantics. Revised edition, 6th impression. Vol. 103. Studies in Logic and the Foundations of Mathematics. Elsevier (cit. on p. 3).
Barendregt, Henk (1990). Functional Programming and Lambda Calculus. In: Handbook of Theoretical Computer Science. Ed. by van Leeuwen, J. Vol. B. Formal Models and Semantics. MIT Press. Chap. 7. DOI: 10.1016/B978-0-444-88074-1.50012-3 (cit. on p. 48).
(3) - (2014). The Impact of the Lambda Calculus. (Slides). URL:
http://www.cs.ru.nl/~henk/CT271014.pdf (visited on 12/06/2019) (cit. on pp. 36, 37). Barendregt, Henk and Barendsen, Erik (2000). Introduction to Lambda Calculus. Revisited edition, Mar. 2000 (cit. on p. 3).
目 Church, Alonzo (1932). A Set of Postulates for the Foundation of Logic. Annals of Mathematics 33.2, pp. 346-366. DOI: 10.2307/1968337 (cit. on p. 33).

圊 -- (1933). A Set of Postulates for the Foundation of Logic (Second Paper). Annals of Mathematics 34.4, pp. 839-864. DOI: $10.2307 / 1968702$ (cit. on p. 33).

References

Hindley, J. R. and Seldin, J. (2008). Lambda-Calculus and Combinators. An Introduction. Cambridge University Press (cit. on p. 3).
Landin, P. J. (1966). The Next 700 Programming Languages. Communications of the ACM 9.3, pp. 157-166. DOI: 10.1145/365230. 365257 (cit. on p. 50).
Paulson, Lawrence C. (2000). Foundations of Functional Programming. Lecture notes. URL: http://www.cl.cam.ac.uk/~1p15/ (visited on 10/06/2020) (cit. on pp. 3, 38, 40, 51).
Peyton Jones, Simon L. (1987). The Implementation of Functional Programming Languages. Prentice-Hall International (cit. on p. 44).
Rosser, J. Barkley (1984). Highlights of the History of Lambda-Calculus. Annals of the History of Computing 6.4, pp. 337-349. DOI: 10.1109/MAHC. 1984.10040 (cit. on p. 34).

