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What is a Type?

A type is a set of values (and operations on them).

Types as ranges of significance of propositional functions. Let 𝜑(𝑥) be a (unary)
propositional function. The type of 𝜑(𝑥) is the range within which 𝑥 must lie if 𝜑(𝑥) is to
be a proposition [Russell (1903) 1938, Appendix B: The Doctrine of Types].
In modern terminology, Rusell’s types are domains of propositional functions.
Example
Let 𝜑(𝑥) be the propositional function ‘𝑥 is a prime number’. Then 𝜑(𝑥) is a proposition
only when its argument is a natural number.

𝜑 ∶ ℕ → {False, True}
𝜑(𝑥) = 𝑥 is a prime number.

Types 2/60



What is a Type?

A type is a set of values (and operations on them).
Types as ranges of significance of propositional functions. Let 𝜑(𝑥) be a (unary)
propositional function. The type of 𝜑(𝑥) is the range within which 𝑥 must lie if 𝜑(𝑥) is to
be a proposition [Russell (1903) 1938, Appendix B: The Doctrine of Types].
In modern terminology, Rusell’s types are domains of propositional functions.

Example
Let 𝜑(𝑥) be the propositional function ‘𝑥 is a prime number’. Then 𝜑(𝑥) is a proposition
only when its argument is a natural number.

𝜑 ∶ ℕ → {False, True}
𝜑(𝑥) = 𝑥 is a prime number.

Types 3/60



What is a Type?

A type is a set of values (and operations on them).
Types as ranges of significance of propositional functions. Let 𝜑(𝑥) be a (unary)
propositional function. The type of 𝜑(𝑥) is the range within which 𝑥 must lie if 𝜑(𝑥) is to
be a proposition [Russell (1903) 1938, Appendix B: The Doctrine of Types].
In modern terminology, Rusell’s types are domains of propositional functions.
Example
Let 𝜑(𝑥) be the propositional function ‘𝑥 is a prime number’. Then 𝜑(𝑥) is a proposition
only when its argument is a natural number.

𝜑 ∶ ℕ → {False, True}
𝜑(𝑥) = 𝑥 is a prime number.

Types 4/60



What is a Type?

‘A type is an approximation of a dynamic behaviour that can be derived from the form of
an expression.’ [Kiselyov and Shan 2008, p. 8]

The propositions-as-types principle (Curry-Howard correspondence)
Homotopy Type Theory (HTT)
Propositions are types, but not all types are propositions (e.g. higher-order inductive
types)

Types 5/60



What is a Type?

‘A type is an approximation of a dynamic behaviour that can be derived from the form of
an expression.’ [Kiselyov and Shan 2008, p. 8]
The propositions-as-types principle (Curry-Howard correspondence)

Homotopy Type Theory (HTT)
Propositions are types, but not all types are propositions (e.g. higher-order inductive
types)

Types 6/60



What is a Type?

‘A type is an approximation of a dynamic behaviour that can be derived from the form of
an expression.’ [Kiselyov and Shan 2008, p. 8]
The propositions-as-types principle (Curry-Howard correspondence)
Homotopy Type Theory (HTT)
Propositions are types, but not all types are propositions (e.g. higher-order inductive
types)

Types 7/60



What is a Type?

Example (some Haskell’s types)
Type variables: a, b
Type constants: Int, Integer, Char
Function types: Int → Bool, (Char → Int) → Integer

Product types: (Int, Char), (a, b)

Disjoint union types:
data Sum a b = Inl a | Inr b
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Type Systems

Over-sized slogan:
‘Well-type programs cannot “go wrong”.’ [Milner 1978, p. 348]

‘A type system is a tractable syntactic method for proving the absence of certain program
behaviors by classifying phrases according to the kinds of values they compute.’ [Pierce
2002, p. 1]
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Referential Transparency

‘We use [referential transparency] to refer to the fact of mathematics which says: The only
thing that matters about an expression is its value, and any subexpression can be replaced by
any other equal in value.’ [Stoy 1977, p. 5].

‘A language that supports the concept that “equals can be substituted for equals” in an
expression without changing the value of the expression is said to be referentially
transparent.’ [Abelson and Sussman 1996, p. 233].
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Referential Transparency

Example
The following C program prints hello, world twice.

#include <stdio.h>

int
main (void)
{

printf ("hello, world");
printf ("hello, world");

return 0;
}
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Referential Transparency

Example
The following C program prints hello, world once.

#include <stdio.h>

int
main (void)
{

int x;

x = printf ("hello, world");
x; x;

return 0;
}
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Referential Transparency

Example
The following Haskell program prints hello, world twice.

main ∷ IO ()
main = putStr "hello, world" >> putStr "hello, world"

Referential Transparency 15/60



Referential Transparency

In Haskell, given
let x = exp
in ... x ... x ...

the meaning of ... x ... x ... is the same as ... exp ... exp ...

Example
The following Haskell program prints hello, world twice.

main ∷ IO ()
main = let x ∷ IO ()

x = putStr "hello, world"
in x >> x

Referential Transparency 16/60



Referential Transparency

In Haskell, given
let x = exp
in ... x ... x ...

the meaning of ... x ... x ... is the same as ... exp ... exp ...

Example
The following Haskell program prints hello, world twice.

main ∷ IO ()
main = let x ∷ IO ()

x = putStr "hello, world"
in x >> x

Referential Transparency 17/60



Referential Transparency

Example
The following Haskell program prints hello, world twice.

main ∷ IO ()
main = x >> x

where x ∷ IO ()
x = putStr "hello, world"
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Pure Functions

Side effects
‘A side effect introduces a dependency between the global state of the system and the be-
haviour of a function... Side effects are essentially invisible inputs to, or outputs from, func-
tions.’ [O’Sullivan, Goerzen and Stewart 2008, p. 27].

Pure functions
‘Take all their input as explicit arguments, and produce all their output as explicit results.’ [Hut-
ton 2007, p. 87].
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Pure Functions

Are the following GHC 7.8.2 functions, pure functions?
maxBound ∷ Int -- Prelude
os ∷ String -- System.Info

‘One perspective is that Haskell is not just one language (plus Prelude), but a family of
languages, parametrized by a collection of implementation-dependent parameters. Each such
language is RT, even if the collection as a whole might not be. Some people are satisfied with
situation and others are not.’ ∗

∗From: https://wiki.haskell.org/Referential_transparency, 2014-02-25.
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Functions are First-Class Citizens

Source: Abelson and Sussman [1996]
They can be passed as arguments and they can be returned as results (higher-order
functions)
They can be assigned to variables
They can be stored in data structures
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Bottom

Working with functions how handle undefined values yielded by partial functions or
non-terminating functions?

Example
head ∷ [a] → a
head (x : _) = x

head [] = ?

Example
fst ∷ (a, b) → a
fst (x, _) = x

ones ∷ [Int]
ones = 1 : ones

fst (ones, 10) = ?
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Bottom

The ⊥ symbol represents the undefined value.
(⊥ is represented in Haskell by the undefined keyword)

Example (first version)
head [] = undefined
fst (ones, 10) = undefined

Remark
The ⊥ value is polymorphic in Haskell.

Remark
The Haskell types are lifted types.∗

∗See ‘Hussling Haskell types into Hasse diagrams’ from Edward Z. Yang’s blog on December 6, 2010.
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Bottom

Example (second version)

head [] = ⊥a
fst (ones, 10) = ⊥[Int]

Therefore, head [] ≠ fst (ones, 10).
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Bottom

Example
foo ∷ Int → Int
foo 0 = 0

bar ∷ Int → Int
bar n = bar (n + 1)

foobar ∷ Int → Int
foobar n = if foo n == 0 then 1 else 2

Can we replace foo by bar in foobar? Only for 𝑛 ≠ 0.
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Lazy Evaluation

See slides for the chapter 12 on the book by Hutton [2007]:
http://www.cs.nott.ac.uk/~gmh/book.html.
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Strict and Non-Strict Functions

Definition
Let f be a unary function. If f ⊥ = ⊥ then f is a strict function, otherwise it is a non-strict
function. The definition generalise to 𝑛-ary functions.

Example
The three function is non-strict.

three ∷ a → Int
three _ = 3

three undefined = 3
three (head []) = 3
three (fst (ones, 10)) = 3
three (putStr "hello, world") = 3
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Strict and Non-Strict Functions

Example
three ∷ a → Int
three _ = 3

Non-strict reasoning...

(∀𝑥 ∈ Int)(∀𝑦)(𝑥 + three 𝑦 = 𝑥 + 3).
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Strict and Non-Strict Functions

Example
(Why Haskell hasn’t a predefined recursive data type for natural numbers?)

data Nat = Zero | Succ Nat

Zero ∷ Nat
Succ ∷ Nat → Nat

Is Succ a non-strict function?
We can define

inf ∷ Nat
inf = Succ inf
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Strict and Non-Strict Functions

Example (cont.)
Nat represents the lazy natural numbers, that is, Succ ⊥ ≠ ⊥ [Escardó 1993].

⋰

0

0 1

1 2

2 inf

0 = ⊥,
𝑛 + 1 = Succ 𝑛,

inf = ⨆
𝑛∈𝜔

𝑛
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Partially Ordered Sets

Definition
A partially ordered set (poset) (𝐷, ⊑) is a set 𝐷 on which the binary relation ⊑ satisfies the
following properties:

∀𝑥. 𝑥 ⊑ 𝑥 (reflexive)
∀𝑥 ∀𝑦 ∀𝑧. 𝑥 ⊑ 𝑦 ∧ 𝑦 ⊑ 𝑧 ⇒ 𝑥 ⊑ 𝑧 (transitive)

∀𝑥 ∀𝑦. 𝑥 ⊑ 𝑦 ∧ 𝑦 ⊑ 𝑥 ⇒ 𝑥 = 𝑦 (antisymmetry)
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Partially Ordered Sets

Examples
(ℤ, ≤) is a poset.
Let 𝑎, 𝑏 ∈ ℤ with 𝑎 ≠ 0. The divisibility relation is defined by 𝑎 ∣ 𝑏 ≔ ∃𝑐 (𝑎𝑐 = 𝑏). Then
(ℤ+, ∣) is a poset.
(𝑃 (𝐴), ⊆) is a poset.
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Partially Ordered Sets

Example
Hasse diagram for the poset ({1, 2, 3, 4, 6, 8, 12}, ∣).

1

2 3

4 6

8 12
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Partially Ordered Sets

Example
Hasse diagram for the poset ({𝑎, 𝑏, 𝑐}, ⊆).

∅

{𝑐}{𝑎} {𝑏}

{𝑎, 𝑐} {𝑎, 𝑏} {𝑏, 𝑐}

{𝑎, 𝑏, 𝑐}
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Monotone Functions

Definition
Let (𝐷, ⊑) and (𝐷′, ⊑′) be two posets. A function 𝑓 ∶ 𝐷 → 𝐷′ is monotone iff

∀𝑥 ∀𝑦. 𝑥 ⊑ 𝑦 ⇒ 𝑓(𝑥) ⊑′ 𝑓(𝑦).
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Some Concepts of Fixed-Point Theory

Let 𝐷 be a set, (𝐷, ⊑) be a poset and 𝑓 be a function 𝑓 ∶ 𝐷 → 𝐷.

Definition
An element 𝑑 ∈ 𝐷 is a fixed-point of 𝑓 iff

𝑓(𝑑) = 𝑑.

Definition
The least/greatest fixed-point of 𝑓 is least/greatest among the fixed-points of 𝑓 .
That is, 𝑑 ∈ 𝐷 is the least/greatest fixed-point of 𝑓 iff:

𝑓(𝑑) = 𝑑 and
∀𝑥.𝑓(𝑥) = 𝑥 ⇒ 𝑑 ⊑ 𝑥 / ∀𝑥.𝑓(𝑥) = 𝑥 ⇒ 𝑥 ⊑ 𝑑.
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Some Concepts of Fixed-Point Theory

Theorem
Let (𝐷, ⊑) be a poset and 𝑓 ∶ 𝐷 → 𝐷 be monotone. Under certain conditions 𝑓 has a least
fixed-point [Winskel 1994] and a greatest fixed-point [Ésik 2009].

Notation
The least and greatest fixed-points of 𝑓 are denoted by 𝜇𝑥.𝑓(𝑥) and 𝜈𝑥.𝑓(𝑥), respectively.
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Introduction to Domain Theory

Motivation: Does 𝜆-calculus have models?

‘Historically my first model for the 𝜆-calculus was discovered in
1969 and details were provided in Scott [1972] (written in
1971).’ [Scott 1980, p. 226.].
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Introduction to Domain Theory

Non-standard definitions
pre-domain, domain, complete partial order (cpo), 𝜔-cpo, bottomless 𝜔-cpo, Scott’s domain, ...

Convention
domain ≡ 𝜔-complete partial order
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𝜔-Complete Partial Orders

Definition
Let (𝐷, ⊑) be a poset. A 𝜔-chain of 𝐷 is an increasing chain

𝑑0 ⊑ 𝑑1 ⊑ ⋯ ⊑ 𝑑𝑛 ⊑ ⋯

where 𝑑𝑖 ∈ 𝐷.
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𝜔-Complete Partial Orders

Definition
Let (𝐷, ⊑) be a poset. The poset 𝐷 is a 𝜔-complete partial order (𝜔-cpo) iff [Plotkin 1992]:

1. There is a least element ⊥ ∈ 𝐷, that is, ∀𝑥.⊥ ⊑ 𝑥. The element ⊥ is called bottom.
2. For every increasing 𝜔-chain 𝑑0 ⊑ 𝑑1 ⊑ ⋯ ⊑ 𝑑𝑛 ⊑ ⋯, the least upper bound ⨆𝑛∈𝜔 𝑑𝑛 ∈ 𝐷

exists.
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𝜔-Complete Partial Orders

Definition
Let 𝐴 be a set. The symbol 𝐴⊥ denotes the 𝜔-cpo whose elements 𝐴 ∪ {⊥} are ordered by

𝑥 ⊑ 𝑦 iff 𝑥 = ⊥ or 𝑥 = 𝑦.

The 𝜔-cpo 𝐴⊥ is called 𝐴 lifted [Mitchell 1996].
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𝜔-Complete Partial Orders

Examples

The lifted unit type and the lifted Booleans 𝐵⊥ are 𝜔-cpos.

⊥

()

data () = ()

⊥

False True

data Bool = True | False
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𝜔-Complete Partial Orders

Example
The lifted natural numbers 𝑁⊥.

⊥

…210 𝑛 𝑛 + 1 …

… …
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𝜔-Complete Partial Orders

Example
The lazy natural numbers 𝜔-cpo.

data Nat = Zero | Succ Nat

⋰

0

0 1

1 2

2 inf

0 = ⊥,
𝑛 + 1 = Succ 𝑛,

inf = ⨆
𝑛∈𝜔

𝑛

⨆
𝑛∈𝜔

𝑛 = ⊥ ⊑ Succ ⊥ ⊑ Succ (Succ ⊥) ⊑ ⋯

= inf = Succ infDomain Theory 56/60



Admissible Properties

Definition
Let 𝐷 be a 𝑤-cpo. A property 𝑃 (a subset of 𝐷) is 𝑤-inductive (admissible) iff whenever
〈𝑥𝑛〉𝑛∈𝜔 is an increasing sequence of elements in 𝑃 , then ⨆𝑛∈𝜔 𝑥𝑛 is also in 𝑃 , that is,

∀𝑛 ∈ 𝜔. 𝑃 (𝑥𝑛) ⇒ 𝑃 ( ⨆
𝑛∈𝜔

𝑥𝑛) .
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