Verification of Functional Programs Preliminary Concepts

Andrés Sicard-Ramírez

EAFIT University
Semester 2014-1

What is a Type?

- A type is a set of values (and operations on them).

What is a Type?

- A type is a set of values (and operations on them).
- Types as ranges of significance of propositional functions. Let $\varphi(x)$ be a (unary) propositional function. The type of $\varphi(x)$ is the range within which x must lie if $\varphi(x)$ is to be a proposition [Russell (1903) 1938, Appendix B: The Doctrine of Types].

In modern terminology, Rusell's types are domains of propositional functions.

What is a Type?

- A type is a set of values (and operations on them).
- Types as ranges of significance of propositional functions. Let $\varphi(x)$ be a (unary) propositional function. The type of $\varphi(x)$ is the range within which x must lie if $\varphi(x)$ is to be a proposition [Russell (1903) 1938, Appendix B: The Doctrine of Types].

In modern terminology, Rusell's types are domains of propositional functions.

Example

Let $\varphi(x)$ be the propositional function ' x is a prime number'. Then $\varphi(x)$ is a proposition only when its argument is a natural number.

$$
\begin{gathered}
\varphi: \mathbb{N} \rightarrow\{\text { False, True }\} \\
\varphi(x)=x \text { is a prime number. }
\end{gathered}
$$

What is a Type?

- 'A type is an approximation of a dynamic behaviour that can be derived from the form of an expression.' [Kiselyov and Shan 2008, p. 8]

What is a Type?

- 'A type is an approximation of a dynamic behaviour that can be derived from the form of an expression.' [Kiselyov and Shan 2008, p. 8]
- The propositions-as-types principle (Curry-Howard correspondence)

What is a Type?

- 'A type is an approximation of a dynamic behaviour that can be derived from the form of an expression.' [Kiselyov and Shan 2008, p. 8]
- The propositions-as-types principle (Curry-Howard correspondence)
- Homotopy Type Theory (HTT)

Propositions are types, but not all types are propositions (e.g. higher-order inductive types)

What is a Type?

Example (some Haskell's types)

- Type variables: a, b
- Type constants: Int, Integer, Char
- Function types: Int \rightarrow Bool, (Char \rightarrow Int) \rightarrow Integer
- Product types: (Int, Char), (a, b)
- Disjoint union types:
data Sum a b = Inl a | Inr b

Type Systems

- Over-sized slogan:
'Well-type programs cannot "go wrong".' [Milner 1978, p. 348]

Type Systems

- Over-sized slogan:
'Well-type programs cannot "go wrong".' [Milner 1978, p. 348]
- 'A type system is a tractable syntactic method for proving the absence of certain program behaviors by classifying phrases according to the kinds of values they compute.' [Pierce 2002, p. 1]

Referential Transparency

'We use [referential transparency] to refer to the fact of mathematics which says: The only thing that matters about an expression is its value, and any subexpression can be replaced by any other equal in value.' [Stoy 1977, p. 5].

Referential Transparency

'We use [referential transparency] to refer to the fact of mathematics which says: The only thing that matters about an expression is its value, and any subexpression can be replaced by any other equal in value.' [Stoy 1977, p. 5].
"A language that supports the concept that "equals can be substituted for equals" in an expression without changing the value of the expression is said to be referentially transparent.' [Abelson and Sussman 1996, p. 233].

Referential Transparency

```
Example
The following C program prints hello, world twice.
```

```
#include <stdio.h>
```

\#include <stdio.h>
int
int
main (void)
main (void)
{
{
printf ("hello, world");
printf ("hello, world");
printf ("hello, world");
printf ("hello, world");
return 0;
return 0;
}

```
}
```


Referential Transparency

```
Example
The following C program prints hello, world once.
```

```
#include <stdio.h>
```

\#include <stdio.h>
int
int
main (void)
main (void)
{
{
int x;
int x;
x = printf ("hello, world");
x = printf ("hello, world");
x; x;
x; x;
return 0;
return 0;
}

```
}
```


Referential Transparency

Example

The following Haskell program prints hello, world twice.

```
main :: IO ()
main = putStr "hello, world" >> putStr "hello, world"
```


Referential Transparency

```
In Haskell, given
    let x = exp
    in ... x ... x ...
the meaning of ... x ... x ... is the same as ... exp ... exp ...
```


Referential Transparency

```
In Haskell, given
    let }x=\operatorname{exp
    in ... x ... x ...
the meaning of ... x ... x ... is the same as ... exp ... exp ...
Example
```

The following Haskell program prints hello, world twice.

```
main :: IO ()
main = let x :: IO ()
        x = putStr "hello, world"
    in x >> x
```


Referential Transparency

Example

The following Haskell program prints hello, world twice.

```
main :: IO ()
main = x >> x
    where x :: IO ()
    x = putStr "hello, world"
```


Pure Functions

Side effects

'A side effect introduces a dependency between the global state of the system and the behaviour of a function... Side effects are essentially invisible inputs to, or outputs from, functions.' [O'Sullivan, Goerzen and Stewart 2008, p. 27].

Pure Functions

Side effects

'A side effect introduces a dependency between the global state of the system and the behaviour of a function... Side effects are essentially invisible inputs to, or outputs from, functions.' [O'Sullivan, Goerzen and Stewart 2008, p. 27].

Pure functions
'Take all their input as explicit arguments, and produce all their output as explicit results.' [Hutton 2007, p. 87].

Pure Functions

Are the following GHC 7.8.2 functions, pure functions?

maxBound	$::$ Int	-- Prelude
os	$::$ String	- System. Info

*From: https://wiki.haskell.org/Referential_transparency, 2014-02-25.

Pure Functions

Are the following GHC 7.8.2 functions, pure functions?

maxBound	$::$ Int	-- Prelude
os	$::$ String	- System. Info

'One perspective is that Haskell is not just one language (plus Prelude), but a family of languages, parametrized by a collection of implementation-dependent parameters. Each such language is RT, even if the collection as a whole might not be. Some people are satisfied with situation and others are not.' *

[^0]
Functions are First-Class Citizens

Source: Abelson and Sussman [1996]

- They can be passed as arguments and they can be returned as results (higher-order functions)
- They can be assigned to variables
- They can be stored in data structures

Bottom

Working with functions how handle undefined values yielded by partial functions or non-terminating functions?

```
Example
    head :: [a] -> a
    head (x : _) = x
    head [] = ?
```


Bottom

Working with functions how handle undefined values yielded by partial functions or non-terminating functions?

```
Example
    head :: [a] }->\textrm{a
    head (x : _) = x
    head [] = ?
```

Example
fst :: (a, b) \rightarrow a
fst (x, _) = x
ones :: [Int]
ones = 1 : ones
fst (ones, 10) = ?

Bottom

The \perp symbol represents the undefined value.
(\perp is represented in Haskell by the undefined keyword)
Example (first version)

```
    head [] = undefined
    fst (ones, 10) = undefined
```

*See 'Hussling Haskell types into Hasse diagrams' from Edward Z. Yang's blog on December 6, 2010.

Bottom

The \perp symbol represents the undefined value.
(\perp is represented in Haskell by the undefined keyword)
Example (first version)
head [] = undefined
fst (ones, 10) = undefined
Remark
The \perp value is polymorphic in Haskell.
Remark
The Haskell types are lifted types.*
*See 'Hussling Haskell types into Hasse diagrams' from Edward Z. Yang's blog on December 6, 2010.

Bottom

Example (second version)

$$
\begin{aligned}
\text { head }[] & =\perp_{\mathrm{a}} \\
\text { fst }(\text { ones }, 10) & =\perp_{[\mathrm{lnt}]}
\end{aligned}
$$

Therefore, head [] \neq fst (ones, 10).

Bottom

```
Example
    foo :: Int -> Int
foo 0 = 0
bar :: Int -> Int
bar n = bar (n + 1)
foobar :: Int -> Int
foobar n = if foo n == 0 then 1 else 2
```


Bottom

```
Example
    foo :: Int -> Int
foo 0 = 0
bar :: Int -> Int
bar n = bar (n + 1)
foobar :: Int -> Int
foobar n = if foo n == 0 then 1 else 2
```

Can we replace foo by bar in foobar?

Bottom

```
Example
foo :: Int -> Int
foo 0 = 0
bar :: Int -> Int
bar n = bar (n + 1)
foobar :: Int -> Int
foobar n = if foo n == 0 then 1 else 2
```

Can we replace foo by bar in foobar? Only for $n \neq 0$.

Lazy Evaluation

See slides for the chapter 12 on the book by Hutton [2007]: http://www.cs.nott.ac.uk/~gmh/book.html.

Strict and Non-Strict Functions

Definition

Let f be a unary function. If $\mathrm{f} \perp=\perp$ then f is a strict function, otherwise it is a non-strict function. The definition generalise to n-ary functions.

Example
The three function is non-strict.

```
three :: a -> Int
three = 3
three undefined = 3
three (head []) = 3
three (fst (ones, 10)) = 3
three (putStr "hello, world") = 3
```


Strict and Non-Strict Functions

```
Example
    three :: a -> Int
    three _ = 3
Non-strict reasoning...
```

$$
(\forall x \in \operatorname{lnt})(\forall y)(x+\text { three } y=x+3)
$$

Strict and Non-Strict Functions

Example

(Why Haskell hasn't a predefined recursive data type for natural numbers?)

```
data Nat = Zero | Succ Nat
Zero :: Nat
Succ :: Nat -> Nat
```


Strict and Non-Strict Functions

```
Example
(Why Haskell hasn't a predefined recursive data type for natural numbers?)
    data Nat = Zero | Succ Nat
    Zero :: Nat
    Succ :: Nat -> Nat
Is Succ a non-strict function?
```


Strict and Non-Strict Functions

```
Example
(Why Haskell hasn't a predefined recursive data type for natural numbers?)
    data Nat = Zero | Succ Nat
    Zero :: Nat
    Succ :: Nat -> Nat
Is Succ a non-strict function?
We can define
    inf :: Nat
    inf = Succ inf
```


Strict and Non-Strict Functions

Example (cont.)

Nat represents the lazy natural numbers, that is, Succ $\perp \neq \perp$ [Escardó 1993].

$$
\begin{aligned}
\underline{0} & =\perp, \\
\frac{n+1}{} & =\text { Succ } n, \\
\inf & =\bigsqcup_{n \in \omega} \underline{n}
\end{aligned}
$$

Partially Ordered Sets

Definition

A partially ordered set (poset) (D, \sqsubseteq) is a set D on which the binary relation \sqsubseteq satisfies the following properties:

$$
\begin{aligned}
\forall x . x \sqsubseteq x & & \text { (reflexive) } \\
\forall x \forall y \forall z \cdot x \sqsubseteq y \wedge y \sqsubseteq z \Rightarrow x \sqsubseteq z & & \text { (transitive) } \\
\forall x \forall y . x \sqsubseteq y \wedge y \sqsubseteq x \Rightarrow x=y & & \text { (antisymme }
\end{aligned}
$$

Partially Ordered Sets

Examples

- (\mathbb{Z}, \leq) is a poset.
- Let $a, b \in \mathbb{Z}$ with $a \neq 0$. The divisibility relation is defined by $a \mid b:=\exists c(a c=b)$. Then $\left(\mathbb{Z}^{+}, \mid\right)$is a poset.
- $(P(A), \subseteq)$ is a poset.

Partially Ordered Sets

Example

Hasse diagram for the poset $(\{1,2,3,4,6,8,12\}, \mid)$.

Partially Ordered Sets

Example

Hasse diagram for the poset $(\{a, b, c\}, \subseteq)$.

Monotone Functions

Definition
Let (D, \sqsubseteq) and $\left(D^{\prime}, \sqsubseteq^{\prime}\right)$ be two posets. A function $f: D \rightarrow D^{\prime}$ is monotone iff

$$
\forall x \forall y . x \sqsubseteq y \Rightarrow f(x) \sqsubseteq^{\prime} f(y) .
$$

Some Concepts of Fixed-Point Theory

Let D be a set, (D, \sqsubseteq) be a poset and f be a function $f: D \rightarrow D$.
Definition
An element $d \in D$ is a fixed-point of f iff

$$
f(d)=d
$$

Some Concepts of Fixed-Point Theory

Let D be a set, (D, \sqsubseteq) be a poset and f be a function $f: D \rightarrow D$.
Definition
An element $d \in D$ is a fixed-point of f iff

$$
f(d)=d
$$

Definition
The least/greatest fixed-point of f is least/greatest among the fixed-points of f.

Some Concepts of Fixed-Point Theory

Let D be a set, (D, \sqsubseteq) be a poset and f be a function $f: D \rightarrow D$.
Definition
An element $d \in D$ is a fixed-point of f iff

$$
f(d)=d
$$

Definition

The least/greatest fixed-point of f is least/greatest among the fixed-points of f.
That is, $d \in D$ is the least/greatest fixed-point of f iff:

- $f(d)=d$ and
- $\forall x . f(x)=x \Rightarrow d \sqsubseteq x / \forall x . f(x)=x \Rightarrow x \sqsubseteq d$.

Some Concepts of Fixed-Point Theory

Theorem
Let (D, \sqsubseteq) be a poset and $f: D \rightarrow D$ be monotone. Under certain conditions f has a least fixed-point [Winskel 1994] and a greatest fixed-point [Ésik 2009].

Some Concepts of Fixed-Point Theory

Theorem
Let (D, \sqsubseteq) be a poset and $f: D \rightarrow D$ be monotone. Under certain conditions f has a least fixed-point [Winskel 1994] and a greatest fixed-point [Ésik 2009].

Notation

The least and greatest fixed-points of f are denoted by $\mu x . f(x)$ and $\nu x . f(x)$, respectively.

Introduction to Domain Theory

Motivation: Does λ-calculus have models?

'Historically my first model for the λ-calculus was discovered in 1969 and details were provided in Scott [1972] (written in 1971).' [Scott 1980, p. 226.].

Introduction to Domain Theory

Non-standard definitions
pre-domain, domain, complete partial order (cpo), ω-cpo, bottomless ω-cpo, Scott's domain, ...

Convention
domain $\equiv \omega$-complete partial order

ω-Complete Partial Orders

Definition

Let (D, \sqsubseteq) be a poset. A ω-chain of D is an increasing chain

$$
d_{0} \sqsubseteq d_{1} \sqsubseteq \cdots \sqsubseteq d_{n} \sqsubseteq \cdots
$$

where $d_{i} \in D$.

ω-Complete Partial Orders

Definition

Let (D, \sqsubseteq) be a poset. The poset D is a ω-complete partial order (ω-cpo) iff [Plotkin 1992]:

1. There is a least element $\perp \in D$, that is, $\forall x . \perp \sqsubseteq x$. The element \perp is called bottom.
2. For every increasing ω-chain $d_{0} \sqsubseteq d_{1} \sqsubseteq \cdots \sqsubseteq d_{n} \sqsubseteq \cdots$, the least upper bound $\bigsqcup_{n \in \omega} d_{n} \in D$ exists.

ω-Complete Partial Orders

Definition

Let A be a set. The symbol A_{\perp} denotes the ω-cpo whose elements $A \cup\{\perp\}$ are ordered by

$$
x \sqsubseteq y \quad \text { iff } \quad x=\perp \text { or } x=y .
$$

The ω-cpo A_{\perp} is called A lifted [Mitchell 1996].

ω-Complete Partial Orders

Examples

The lifted unit type and the lifted Booleans B_{\perp} are ω-cpos.

data () = ()

data Bool = True | False

ω-Complete Partial Orders

Example

The lifted natural numbers N_{\perp}.

ω-Complete Partial Orders

Example

The lazy natural numbers ω-cpo.
data Nat = Zero | Succ Nat

Admissible Properties

Definition

Let D be a w-cpo. A property P (a subset of D) is w-inductive (admissible) iff whenever $\left\langle x_{n}\right\rangle_{n \in \omega}$ is an increasing sequence of elements in P, then $\bigsqcup_{n \in \omega} x_{n}$ is also in P, that is,

$$
\forall n \in \omega \cdot P\left(x_{n}\right) \Rightarrow P\left(\bigsqcup_{n \in \omega} x_{n}\right)
$$

References

Abelson, Harold and Sussman, Gerald Jay (1996). Structure and Interpretation of Computer Programs. 2nd ed. MIT Press (cit. on pp. 11, 12, 23).
Escardó, Martín Hötzel (1993). On Lazy Natural Numbers with Applications to Computability Theory and Functional Programming. SIGACT News 24.1, pp. 61-67. DOI: 10.1145/152992.153008 (cit. on p. 38).

Ésik, Zoltán (2009). Fixed Point Theory. In: Handbook of Weighted Automata. Ed. by Droste, Manfred, Kuich, Werner and Vogler, Heiko. Monographs in Theoretical Computer Science. An EATCS Series. Springer. Chap. 2 (cit. on pp. 47, 48).
Hutton, Graham (2007). Programming in Haskell. Cambridge University Press (cit. on pp. 19, 20, 32). Kiselyov, Oleg and Shan, Chung-chieh (2008). Interpreting Types as Abstract Values. Formosan Summer School on Logic, Language and Computacion (FLOLAC 2008) (cit. on pp. 5-7).
Milner, Robin (1978). A Theory of Type Polymorphism in Programming. Journal of Computer and System Science 17, pp. 348-375 (cit. on pp. 9, 10).
Mitchell, John C. (1996). Foundations for Programming Languages. MIT Press (cit. on p. 53).

References

O'Sullivan, Bryan, Goerzen, John and Stewart, Don (2008). Real World Haskell. O'Really Media, Inc. (cit. on pp. 19, 20).
Pierce, Benjamin C. (2002). Types and Programming Languages. MIT Press (cit. on pp. 9, 10).
Plotkin, Gordon (1992). Post-graduate Lecture Notes in Advance Domain Theory (Incorporating the "Pisa Notes"). Electronic edition prepared by Yugo Kashiwagi and Hidetaka Kondoh. Url: http: //homepages.inf.ed.ac.uk/gdp/ (visited on 29/07/2014) (cit. on p. 52).
Russell, Bertrand [1903] (1938). The Principles of Mathematics. 2nd ed. W. W. Norton \& Company, Inc (cit. on pp. 2-4).
Scott, Dana (1972). Continuous Lattices. In: Toposes, Algebraic Geometry and Logic. Ed. by Lawvere, F. W. Vol. 274. Lecture Notes in Mathematics. Springer, pp. 97-136. Doi: 10.1007 / BFb0073967 (cit. on p. 49).

- (1980). Lambda Calculus: Some Models, Some Philosophy. In: The Kleene Symposium. Ed. by Barwise, Jon, Keisler, H. Jerome and Kunen, Kenneth. Vol. 101. Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Company, pp. 223-265 (cit. on p. 49).
Stoy, Joseph (1977). Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory. MIT Press (cit. on pp. 11, 12).

References

Winskel, Glynn (1994). The Formal Semantics of Programming Languages. An Introduction. Second printing. MIT Press (cit. on pp. 47, 48).

[^0]: *From: https://wiki.haskell.org/Referential_transparency, 2014-02-25.

