
Verification of Functional Programs
Preliminary Concepts

Andrés Sicard-Ramírez

EAFIT University

Semester 2014-1

What is a Type?

A type is a set of values (and operations on them).

Types as ranges of significance of propositional functions. Let 𝜑(𝑥) be a (unary)
propositional function. The type of 𝜑(𝑥) is the range within which 𝑥 must lie if 𝜑(𝑥) is to
be a proposition [Russell (1903) 1938, Appendix B: The Doctrine of Types].
In modern terminology, Rusell’s types are domains of propositional functions.
Example
Let 𝜑(𝑥) be the propositional function ‘𝑥 is a prime number’. Then 𝜑(𝑥) is a proposition
only when its argument is a natural number.

𝜑 ∶ ℕ → {False, True}
𝜑(𝑥) = 𝑥 is a prime number.

Types 2/60

What is a Type?

A type is a set of values (and operations on them).
Types as ranges of significance of propositional functions. Let 𝜑(𝑥) be a (unary)
propositional function. The type of 𝜑(𝑥) is the range within which 𝑥 must lie if 𝜑(𝑥) is to
be a proposition [Russell (1903) 1938, Appendix B: The Doctrine of Types].
In modern terminology, Rusell’s types are domains of propositional functions.

Example
Let 𝜑(𝑥) be the propositional function ‘𝑥 is a prime number’. Then 𝜑(𝑥) is a proposition
only when its argument is a natural number.

𝜑 ∶ ℕ → {False, True}
𝜑(𝑥) = 𝑥 is a prime number.

Types 3/60

What is a Type?

A type is a set of values (and operations on them).
Types as ranges of significance of propositional functions. Let 𝜑(𝑥) be a (unary)
propositional function. The type of 𝜑(𝑥) is the range within which 𝑥 must lie if 𝜑(𝑥) is to
be a proposition [Russell (1903) 1938, Appendix B: The Doctrine of Types].
In modern terminology, Rusell’s types are domains of propositional functions.
Example
Let 𝜑(𝑥) be the propositional function ‘𝑥 is a prime number’. Then 𝜑(𝑥) is a proposition
only when its argument is a natural number.

𝜑 ∶ ℕ → {False, True}
𝜑(𝑥) = 𝑥 is a prime number.

Types 4/60

What is a Type?

‘A type is an approximation of a dynamic behaviour that can be derived from the form of
an expression.’ [Kiselyov and Shan 2008, p. 8]

The propositions-as-types principle (Curry-Howard correspondence)
Homotopy Type Theory (HTT)
Propositions are types, but not all types are propositions (e.g. higher-order inductive
types)

Types 5/60

What is a Type?

‘A type is an approximation of a dynamic behaviour that can be derived from the form of
an expression.’ [Kiselyov and Shan 2008, p. 8]
The propositions-as-types principle (Curry-Howard correspondence)

Homotopy Type Theory (HTT)
Propositions are types, but not all types are propositions (e.g. higher-order inductive
types)

Types 6/60

What is a Type?

‘A type is an approximation of a dynamic behaviour that can be derived from the form of
an expression.’ [Kiselyov and Shan 2008, p. 8]
The propositions-as-types principle (Curry-Howard correspondence)
Homotopy Type Theory (HTT)
Propositions are types, but not all types are propositions (e.g. higher-order inductive
types)

Types 7/60

What is a Type?

Example (some Haskell’s types)
Type variables: a, b
Type constants: Int, Integer, Char
Function types: Int → Bool, (Char → Int) → Integer

Product types: (Int, Char), (a, b)

Disjoint union types:
data Sum a b = Inl a | Inr b

Types 8/60

Type Systems

Over-sized slogan:
‘Well-type programs cannot “go wrong”.’ [Milner 1978, p. 348]

‘A type system is a tractable syntactic method for proving the absence of certain program
behaviors by classifying phrases according to the kinds of values they compute.’ [Pierce
2002, p. 1]

Types 9/60

Type Systems

Over-sized slogan:
‘Well-type programs cannot “go wrong”.’ [Milner 1978, p. 348]

‘A type system is a tractable syntactic method for proving the absence of certain program
behaviors by classifying phrases according to the kinds of values they compute.’ [Pierce
2002, p. 1]

Types 10/60

Referential Transparency

‘We use [referential transparency] to refer to the fact of mathematics which says: The only
thing that matters about an expression is its value, and any subexpression can be replaced by
any other equal in value.’ [Stoy 1977, p. 5].

‘A language that supports the concept that “equals can be substituted for equals” in an
expression without changing the value of the expression is said to be referentially
transparent.’ [Abelson and Sussman 1996, p. 233].

Referential Transparency 11/60

Referential Transparency

‘We use [referential transparency] to refer to the fact of mathematics which says: The only
thing that matters about an expression is its value, and any subexpression can be replaced by
any other equal in value.’ [Stoy 1977, p. 5].
‘A language that supports the concept that “equals can be substituted for equals” in an
expression without changing the value of the expression is said to be referentially
transparent.’ [Abelson and Sussman 1996, p. 233].

Referential Transparency 12/60

Referential Transparency

Example
The following C program prints hello, world twice.

#include <stdio.h>

int
main (void)
{

printf ("hello, world");
printf ("hello, world");

return 0;
}

Referential Transparency 13/60

Referential Transparency

Example
The following C program prints hello, world once.

#include <stdio.h>

int
main (void)
{

int x;

x = printf ("hello, world");
x; x;

return 0;
}

Referential Transparency 14/60

Referential Transparency

Example
The following Haskell program prints hello, world twice.

main ∷ IO ()
main = putStr "hello, world" >> putStr "hello, world"

Referential Transparency 15/60

Referential Transparency

In Haskell, given
let x = exp
in ... x ... x ...

the meaning of ... x ... x ... is the same as ... exp ... exp ...

Example
The following Haskell program prints hello, world twice.

main ∷ IO ()
main = let x ∷ IO ()

x = putStr "hello, world"
in x >> x

Referential Transparency 16/60

Referential Transparency

In Haskell, given
let x = exp
in ... x ... x ...

the meaning of ... x ... x ... is the same as ... exp ... exp ...

Example
The following Haskell program prints hello, world twice.

main ∷ IO ()
main = let x ∷ IO ()

x = putStr "hello, world"
in x >> x

Referential Transparency 17/60

Referential Transparency

Example
The following Haskell program prints hello, world twice.

main ∷ IO ()
main = x >> x

where x ∷ IO ()
x = putStr "hello, world"

Referential Transparency 18/60

Pure Functions

Side effects
‘A side effect introduces a dependency between the global state of the system and the be-
haviour of a function... Side effects are essentially invisible inputs to, or outputs from, func-
tions.’ [O’Sullivan, Goerzen and Stewart 2008, p. 27].

Pure functions
‘Take all their input as explicit arguments, and produce all their output as explicit results.’ [Hut-
ton 2007, p. 87].

Pure Functions 19/60

Pure Functions

Side effects
‘A side effect introduces a dependency between the global state of the system and the be-
haviour of a function... Side effects are essentially invisible inputs to, or outputs from, func-
tions.’ [O’Sullivan, Goerzen and Stewart 2008, p. 27].

Pure functions
‘Take all their input as explicit arguments, and produce all their output as explicit results.’ [Hut-
ton 2007, p. 87].

Pure Functions 20/60

Pure Functions

Are the following GHC 7.8.2 functions, pure functions?
maxBound ∷ Int -- Prelude
os ∷ String -- System.Info

‘One perspective is that Haskell is not just one language (plus Prelude), but a family of
languages, parametrized by a collection of implementation-dependent parameters. Each such
language is RT, even if the collection as a whole might not be. Some people are satisfied with
situation and others are not.’ ∗

∗From: https://wiki.haskell.org/Referential_transparency, 2014-02-25.
Pure Functions 21/60

https://wiki.haskell.org/Referential_transparency

Pure Functions

Are the following GHC 7.8.2 functions, pure functions?
maxBound ∷ Int -- Prelude
os ∷ String -- System.Info

‘One perspective is that Haskell is not just one language (plus Prelude), but a family of
languages, parametrized by a collection of implementation-dependent parameters. Each such
language is RT, even if the collection as a whole might not be. Some people are satisfied with
situation and others are not.’ ∗

∗From: https://wiki.haskell.org/Referential_transparency, 2014-02-25.
Pure Functions 22/60

https://wiki.haskell.org/Referential_transparency

Functions are First-Class Citizens

Source: Abelson and Sussman [1996]
They can be passed as arguments and they can be returned as results (higher-order
functions)
They can be assigned to variables
They can be stored in data structures

Functions are First-Class Citizens 23/60

Bottom

Working with functions how handle undefined values yielded by partial functions or
non-terminating functions?

Example
head ∷ [a] → a
head (x : _) = x

head [] = ?

Example
fst ∷ (a, b) → a
fst (x, _) = x

ones ∷ [Int]
ones = 1 : ones

fst (ones, 10) = ?

Bottom 24/60

Bottom

Working with functions how handle undefined values yielded by partial functions or
non-terminating functions?

Example
head ∷ [a] → a
head (x : _) = x

head [] = ?

Example
fst ∷ (a, b) → a
fst (x, _) = x

ones ∷ [Int]
ones = 1 : ones

fst (ones, 10) = ?

Bottom 25/60

Bottom

The ⊥ symbol represents the undefined value.
(⊥ is represented in Haskell by the undefined keyword)

Example (first version)
head [] = undefined
fst (ones, 10) = undefined

Remark
The ⊥ value is polymorphic in Haskell.

Remark
The Haskell types are lifted types.∗

∗See ‘Hussling Haskell types into Hasse diagrams’ from Edward Z. Yang’s blog on December 6, 2010.
Bottom 26/60

Bottom

The ⊥ symbol represents the undefined value.
(⊥ is represented in Haskell by the undefined keyword)

Example (first version)
head [] = undefined
fst (ones, 10) = undefined

Remark
The ⊥ value is polymorphic in Haskell.

Remark
The Haskell types are lifted types.∗

∗See ‘Hussling Haskell types into Hasse diagrams’ from Edward Z. Yang’s blog on December 6, 2010.
Bottom 27/60

Bottom

Example (second version)

head [] = ⊥a
fst (ones, 10) = ⊥[Int]

Therefore, head [] ≠ fst (ones, 10).

Bottom 28/60

Bottom

Example
foo ∷ Int → Int
foo 0 = 0

bar ∷ Int → Int
bar n = bar (n + 1)

foobar ∷ Int → Int
foobar n = if foo n == 0 then 1 else 2

Can we replace foo by bar in foobar? Only for 𝑛 ≠ 0.

Bottom 29/60

Bottom

Example
foo ∷ Int → Int
foo 0 = 0

bar ∷ Int → Int
bar n = bar (n + 1)

foobar ∷ Int → Int
foobar n = if foo n == 0 then 1 else 2

Can we replace foo by bar in foobar?

Only for 𝑛 ≠ 0.

Bottom 30/60

Bottom

Example
foo ∷ Int → Int
foo 0 = 0

bar ∷ Int → Int
bar n = bar (n + 1)

foobar ∷ Int → Int
foobar n = if foo n == 0 then 1 else 2

Can we replace foo by bar in foobar? Only for 𝑛 ≠ 0.

Bottom 31/60

Lazy Evaluation

See slides for the chapter 12 on the book by Hutton [2007]:
http://www.cs.nott.ac.uk/~gmh/book.html.

Lazy Evaluation 32/60

http://www.cs.nott.ac.uk/~gmh/book.html

Strict and Non-Strict Functions

Definition
Let f be a unary function. If f ⊥ = ⊥ then f is a strict function, otherwise it is a non-strict
function. The definition generalise to 𝑛-ary functions.

Example
The three function is non-strict.

three ∷ a → Int
three _ = 3

three undefined = 3
three (head []) = 3
three (fst (ones, 10)) = 3
three (putStr "hello, world") = 3

Strict and Non-Strict Functions 33/60

Strict and Non-Strict Functions

Example
three ∷ a → Int
three _ = 3

Non-strict reasoning...

(∀𝑥 ∈ Int)(∀𝑦)(𝑥 + three 𝑦 = 𝑥 + 3).

Strict and Non-Strict Functions 34/60

Strict and Non-Strict Functions

Example
(Why Haskell hasn’t a predefined recursive data type for natural numbers?)

data Nat = Zero | Succ Nat

Zero ∷ Nat
Succ ∷ Nat → Nat

Is Succ a non-strict function?
We can define

inf ∷ Nat
inf = Succ inf

Strict and Non-Strict Functions 35/60

Strict and Non-Strict Functions

Example
(Why Haskell hasn’t a predefined recursive data type for natural numbers?)

data Nat = Zero | Succ Nat

Zero ∷ Nat
Succ ∷ Nat → Nat

Is Succ a non-strict function?

We can define
inf ∷ Nat
inf = Succ inf

Strict and Non-Strict Functions 36/60

Strict and Non-Strict Functions

Example
(Why Haskell hasn’t a predefined recursive data type for natural numbers?)

data Nat = Zero | Succ Nat

Zero ∷ Nat
Succ ∷ Nat → Nat

Is Succ a non-strict function?
We can define

inf ∷ Nat
inf = Succ inf

Strict and Non-Strict Functions 37/60

Strict and Non-Strict Functions

Example (cont.)
Nat represents the lazy natural numbers, that is, Succ ⊥ ≠ ⊥ [Escardó 1993].

⋰

0

0 1

1 2

2 inf

0 = ⊥,
𝑛 + 1 = Succ 𝑛,

inf = ⨆
𝑛∈𝜔

𝑛

Strict and Non-Strict Functions 38/60

Partially Ordered Sets

Definition
A partially ordered set (poset) (𝐷, ⊑) is a set 𝐷 on which the binary relation ⊑ satisfies the
following properties:

∀𝑥. 𝑥 ⊑ 𝑥 (reflexive)
∀𝑥 ∀𝑦 ∀𝑧. 𝑥 ⊑ 𝑦 ∧ 𝑦 ⊑ 𝑧 ⇒ 𝑥 ⊑ 𝑧 (transitive)

∀𝑥 ∀𝑦. 𝑥 ⊑ 𝑦 ∧ 𝑦 ⊑ 𝑥 ⇒ 𝑥 = 𝑦 (antisymmetry)

Partial Orders Theory 39/60

Partially Ordered Sets

Examples
(ℤ, ≤) is a poset.
Let 𝑎, 𝑏 ∈ ℤ with 𝑎 ≠ 0. The divisibility relation is defined by 𝑎 ∣ 𝑏 ≔ ∃𝑐 (𝑎𝑐 = 𝑏). Then
(ℤ+, ∣) is a poset.
(𝑃 (𝐴), ⊆) is a poset.

Partial Orders Theory 40/60

Partially Ordered Sets

Example
Hasse diagram for the poset ({1, 2, 3, 4, 6, 8, 12}, ∣).

1

2 3

4 6

8 12

Partial Orders Theory 41/60

Partially Ordered Sets

Example
Hasse diagram for the poset ({𝑎, 𝑏, 𝑐}, ⊆).

∅

{𝑐}{𝑎} {𝑏}

{𝑎, 𝑐} {𝑎, 𝑏} {𝑏, 𝑐}

{𝑎, 𝑏, 𝑐}

Partial Orders Theory 42/60

Monotone Functions

Definition
Let (𝐷, ⊑) and (𝐷′, ⊑′) be two posets. A function 𝑓 ∶ 𝐷 → 𝐷′ is monotone iff

∀𝑥 ∀𝑦. 𝑥 ⊑ 𝑦 ⇒ 𝑓(𝑥) ⊑′ 𝑓(𝑦).

Partial Orders Theory 43/60

Some Concepts of Fixed-Point Theory

Let 𝐷 be a set, (𝐷, ⊑) be a poset and 𝑓 be a function 𝑓 ∶ 𝐷 → 𝐷.

Definition
An element 𝑑 ∈ 𝐷 is a fixed-point of 𝑓 iff

𝑓(𝑑) = 𝑑.

Definition
The least/greatest fixed-point of 𝑓 is least/greatest among the fixed-points of 𝑓 .
That is, 𝑑 ∈ 𝐷 is the least/greatest fixed-point of 𝑓 iff:

𝑓(𝑑) = 𝑑 and
∀𝑥.𝑓(𝑥) = 𝑥 ⇒ 𝑑 ⊑ 𝑥 / ∀𝑥.𝑓(𝑥) = 𝑥 ⇒ 𝑥 ⊑ 𝑑.

Fixed-Point Theory 44/60

Some Concepts of Fixed-Point Theory

Let 𝐷 be a set, (𝐷, ⊑) be a poset and 𝑓 be a function 𝑓 ∶ 𝐷 → 𝐷.

Definition
An element 𝑑 ∈ 𝐷 is a fixed-point of 𝑓 iff

𝑓(𝑑) = 𝑑.

Definition
The least/greatest fixed-point of 𝑓 is least/greatest among the fixed-points of 𝑓 .

That is, 𝑑 ∈ 𝐷 is the least/greatest fixed-point of 𝑓 iff:
𝑓(𝑑) = 𝑑 and
∀𝑥.𝑓(𝑥) = 𝑥 ⇒ 𝑑 ⊑ 𝑥 / ∀𝑥.𝑓(𝑥) = 𝑥 ⇒ 𝑥 ⊑ 𝑑.

Fixed-Point Theory 45/60

Some Concepts of Fixed-Point Theory

Let 𝐷 be a set, (𝐷, ⊑) be a poset and 𝑓 be a function 𝑓 ∶ 𝐷 → 𝐷.

Definition
An element 𝑑 ∈ 𝐷 is a fixed-point of 𝑓 iff

𝑓(𝑑) = 𝑑.

Definition
The least/greatest fixed-point of 𝑓 is least/greatest among the fixed-points of 𝑓 .
That is, 𝑑 ∈ 𝐷 is the least/greatest fixed-point of 𝑓 iff:

𝑓(𝑑) = 𝑑 and
∀𝑥.𝑓(𝑥) = 𝑥 ⇒ 𝑑 ⊑ 𝑥 / ∀𝑥.𝑓(𝑥) = 𝑥 ⇒ 𝑥 ⊑ 𝑑.

Fixed-Point Theory 46/60

Some Concepts of Fixed-Point Theory

Theorem
Let (𝐷, ⊑) be a poset and 𝑓 ∶ 𝐷 → 𝐷 be monotone. Under certain conditions 𝑓 has a least
fixed-point [Winskel 1994] and a greatest fixed-point [Ésik 2009].

Notation
The least and greatest fixed-points of 𝑓 are denoted by 𝜇𝑥.𝑓(𝑥) and 𝜈𝑥.𝑓(𝑥), respectively.

Fixed-Point Theory 47/60

Some Concepts of Fixed-Point Theory

Theorem
Let (𝐷, ⊑) be a poset and 𝑓 ∶ 𝐷 → 𝐷 be monotone. Under certain conditions 𝑓 has a least
fixed-point [Winskel 1994] and a greatest fixed-point [Ésik 2009].

Notation
The least and greatest fixed-points of 𝑓 are denoted by 𝜇𝑥.𝑓(𝑥) and 𝜈𝑥.𝑓(𝑥), respectively.

Fixed-Point Theory 48/60

Introduction to Domain Theory

Motivation: Does 𝜆-calculus have models?

‘Historically my first model for the 𝜆-calculus was discovered in
1969 and details were provided in Scott [1972] (written in
1971).’ [Scott 1980, p. 226.].

Domain Theory 49/60

Introduction to Domain Theory

Non-standard definitions
pre-domain, domain, complete partial order (cpo), 𝜔-cpo, bottomless 𝜔-cpo, Scott’s domain, ...

Convention
domain ≡ 𝜔-complete partial order

Domain Theory 50/60

𝜔-Complete Partial Orders

Definition
Let (𝐷, ⊑) be a poset. A 𝜔-chain of 𝐷 is an increasing chain

𝑑0 ⊑ 𝑑1 ⊑ ⋯ ⊑ 𝑑𝑛 ⊑ ⋯

where 𝑑𝑖 ∈ 𝐷.

Domain Theory 51/60

𝜔-Complete Partial Orders

Definition
Let (𝐷, ⊑) be a poset. The poset 𝐷 is a 𝜔-complete partial order (𝜔-cpo) iff [Plotkin 1992]:

1. There is a least element ⊥ ∈ 𝐷, that is, ∀𝑥.⊥ ⊑ 𝑥. The element ⊥ is called bottom.
2. For every increasing 𝜔-chain 𝑑0 ⊑ 𝑑1 ⊑ ⋯ ⊑ 𝑑𝑛 ⊑ ⋯, the least upper bound ⨆𝑛∈𝜔 𝑑𝑛 ∈ 𝐷

exists.

Domain Theory 52/60

𝜔-Complete Partial Orders

Definition
Let 𝐴 be a set. The symbol 𝐴⊥ denotes the 𝜔-cpo whose elements 𝐴 ∪ {⊥} are ordered by

𝑥 ⊑ 𝑦 iff 𝑥 = ⊥ or 𝑥 = 𝑦.

The 𝜔-cpo 𝐴⊥ is called 𝐴 lifted [Mitchell 1996].

Domain Theory 53/60

𝜔-Complete Partial Orders

Examples

The lifted unit type and the lifted Booleans 𝐵⊥ are 𝜔-cpos.

⊥

()

data () = ()

⊥

False True

data Bool = True | False

Domain Theory 54/60

𝜔-Complete Partial Orders

Example
The lifted natural numbers 𝑁⊥.

⊥

…210 𝑛 𝑛 + 1 …

… …

Domain Theory 55/60

𝜔-Complete Partial Orders

Example
The lazy natural numbers 𝜔-cpo.

data Nat = Zero | Succ Nat

⋰

0

0 1

1 2

2 inf

0 = ⊥,
𝑛 + 1 = Succ 𝑛,

inf = ⨆
𝑛∈𝜔

𝑛

⨆
𝑛∈𝜔

𝑛 = ⊥ ⊑ Succ ⊥ ⊑ Succ (Succ ⊥) ⊑ ⋯

= inf = Succ infDomain Theory 56/60

Admissible Properties

Definition
Let 𝐷 be a 𝑤-cpo. A property 𝑃 (a subset of 𝐷) is 𝑤-inductive (admissible) iff whenever
〈𝑥𝑛〉𝑛∈𝜔 is an increasing sequence of elements in 𝑃 , then ⨆𝑛∈𝜔 𝑥𝑛 is also in 𝑃 , that is,

∀𝑛 ∈ 𝜔. 𝑃 (𝑥𝑛) ⇒ 𝑃 (⨆
𝑛∈𝜔

𝑥𝑛) .

Domain Theory 57/60

References

Abelson, Harold and Sussman, Gerald Jay (1996). Structure and Interpretation of Computer Programs.
2nd ed. MIT Press (cit. on pp. 11, 12, 23).

Escardó, Martín Hötzel (1993). On Lazy Natural Numbers with Applications to Computability Theory
and Functional Programming. SIGACT News 24.1, pp. 61–67. doi: 10.1145/152992.153008 (cit. on
p. 38).

Ésik, Zoltán (2009). Fixed Point Theory. In: Handbook of Weighted Automata. Ed. by Droste, Manfred,
Kuich, Werner and Vogler, Heiko. Monographs in Theoretical Computer Science. An EATCS Series.
Springer. Chap. 2 (cit. on pp. 47, 48).

Hutton, Graham (2007). Programming in Haskell. Cambridge University Press (cit. on pp. 19, 20, 32).
Kiselyov, Oleg and Shan, Chung-chieh (2008). Interpreting Types as Abstract Values. Formosan Summer

School on Logic, Language and Computacion (FLOLAC 2008) (cit. on pp. 5–7).
Milner, Robin (1978). A Theory of Type Polymorphism in Programming. Journal of Computer and System

Science 17, pp. 348–375 (cit. on pp. 9, 10).
Mitchell, John C. (1996). Foundations for Programming Languages. MIT Press (cit. on p. 53).

References 58/60

https://doi.org/10.1145/152992.153008

References

O’Sullivan, Bryan, Goerzen, John and Stewart, Don (2008). Real World Haskell. O’Really Media, Inc.
(cit. on pp. 19, 20).

Pierce, Benjamin C. (2002). Types and Programming Languages. MIT Press (cit. on pp. 9, 10).
Plotkin, Gordon (1992). Post-graduate Lecture Notes in Advance Domain Theory (Incorporating the

“Pisa Notes”). Electronic edition prepared by Yugo Kashiwagi and Hidetaka Kondoh. url: http:
//homepages.inf.ed.ac.uk/gdp/ (visited on 29/07/2014) (cit. on p. 52).

Russell, Bertrand [1903] (1938). The Principles of Mathematics. 2nd ed. W. W. Norton & Company, Inc
(cit. on pp. 2–4).

Scott, Dana (1972). Continuous Lattices. In: Toposes, Algebraic Geometry and Logic. Ed. by Lawvere,
F. W. Vol. 274. Lecture Notes in Mathematics. Springer, pp. 97–136. doi: 10.1007/BFb0073967
(cit. on p. 49).

— (1980). Lambda Calculus: Some Models, Some Philosophy. In: The Kleene Symposium. Ed. by Bar-
wise, Jon, Keisler, H. Jerome and Kunen, Kenneth. Vol. 101. Studies in Logic and the Foundations
of Mathematics. North-Holland Publishing Company, pp. 223–265 (cit. on p. 49).

Stoy, Joseph (1977). Denotational Semantics: The Scott-Strachey Approach to Programming Language
Theory. MIT Press (cit. on pp. 11, 12).

References 59/60

http://homepages.inf.ed.ac.uk/gdp/
http://homepages.inf.ed.ac.uk/gdp/
https://doi.org/10.1007/BFb0073967

References

Winskel, Glynn (1994). The Formal Semantics of Programming Languages. An Introduction. Second
printing. MIT Press (cit. on pp. 47, 48).

References 60/60

	Types
	Referential Transparency
	Pure Functions
	Functions are First-Class Citizens
	Bottom
	Lazy Evaluation
	Strict and Non-Strict Functions
	Partial Orders Theory
	Fixed-Point Theory
	Domain Theory
	References

