
Verification of Functional Programs
Introduction

Andrés Sicard-Ramírez

EAFIT University

Semester 2014-1

Administrative Information

Course web page
http://www1.eafit.edu.co/asr/courses/verification-of-functional-programs/

Evaluation
Homework 30%
Presentation 30%
Final project 40%

Administrative Information 2/31

http://www1.eafit.edu.co/asr/courses/verification-of-functional-programs/

Preliminaries

Notation
Sometimes we write ∀𝑥𝛼 or ∀𝑥.𝛼 instead of ∀𝑥(𝛼). In ∀𝑥.𝛼, the scope of the quantifier extends
as far as possible, e.g. ∀𝑥.𝛼 ∧ 𝛽 means ∀𝑥(𝛼 ∧ 𝛽). Similar for ∃.

Source code
All code in the examples have been tested with Agda 2.6.0.1, Coq 8.9.1 and Isabelle 2019 (June
2019).

Preliminaries 3/31

Motivation

U$22.2 to U$59.5 billion!∗

∗Source: Tassey [2002].
Motivation 4/31

Motivational Example

‘Every functional programmer worth his salt knows how to reverse a list, debug the code, and
prove that list reversal is its own inverse.’ [Swierstra and Altenkirch 2007, p. 25]

Let’s go (Haskell code) …
(++) ∷ [a] → [a] → [a]
[] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

rev ∷ [a] → [a]
rev [] = []
rev (x : xs) = rev xs ++ [x]

To prove that the rev function is an involution.

Motivation 5/31

Motivational Example

‘Every functional programmer worth his salt knows how to reverse a list, debug the code, and
prove that list reversal is its own inverse.’ [Swierstra and Altenkirch 2007, p. 25]
Let’s go (Haskell code) …

(++) ∷ [a] → [a] → [a]
[] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

rev ∷ [a] → [a]
rev [] = []
rev (x : xs) = rev xs ++ [x]

To prove that the rev function is an involution.

Motivation 6/31

Motivational Example

Example
Proving rev (rev xs) = xs.
Case [].

rev (rev []) = rev [] (rev.1)
= [] (rev.1)

Case x:xs.
rev (rev (x : xs)) = rev (rev xs ++ [x]) (rev.2)

= x : rev (rev xs) (auxiliary thm.)
= x : xs (IH)

Auxiliary theorem: rev (ys ++ [x]) = x : rev ys.

Motivation 7/31

Motivational Example

Example
Proving rev (rev xs) = xs.
Case [].

rev (rev []) = rev [] (rev.1)
= [] (rev.1)

Case x:xs.
rev (rev (x : xs)) = rev (rev xs ++ [x]) (rev.2)

= x : rev (rev xs) (auxiliary thm.)
= x : xs (IH)

Auxiliary theorem: rev (ys ++ [x]) = x : rev ys.

Motivation 8/31

Motivational Example

Observation
The auxiliary theorem

rev (ys ++ [x]) = x : rev ys

is a generalisation of the required result

rev (rev xs ++ [x]) = x : rev (rev xs).

‘A standard method of generalisation is to look for a sub-expression that appears on both sides
of the equation and replace it by a variable.’ [Bird and Wadler 1988, p. 124]

Motivation 9/31

Observations from the Motivational Example

Inductive data types ⇒ Structural induction for reasoning about them.

Equational reasoning (process of replacing like for like using the substitutivity property
and the equivalence properties of the equality) based on the referential transparency.

Generalisation of auxiliary theorem (including the inductive hypothesis) ⇒ Proofs by
induction are difficulty to automatise.

Motivation 10/31

Observations from the Motivational Example

Inductive data types ⇒ Structural induction for reasoning about them.

Equational reasoning (process of replacing like for like using the substitutivity property
and the equivalence properties of the equality) based on the referential transparency.

Generalisation of auxiliary theorem (including the inductive hypothesis) ⇒ Proofs by
induction are difficulty to automatise.

Motivation 11/31

Observations from the Motivational Example

Inductive data types ⇒ Structural induction for reasoning about them.

Equational reasoning (process of replacing like for like using the substitutivity property
and the equivalence properties of the equality) based on the referential transparency.

Generalisation of auxiliary theorem (including the inductive hypothesis) ⇒ Proofs by
induction are difficulty to automatise.

Motivation 12/31

Questions from the Motivational Example

What about ⊥?
rev (rev ⊥) ≟ ⊥

Extend structural induction for handling ⊥.
Choose a programming logic to behaviours of programs on total and finite elements
of data structures [Bove, Dybjer and Sicard-Ramírez 2009; Dybjer 1985].
‘Morally’ correct reasoning [Danielsson, J. Hughes, Jansson and Gibbons 2006].

Motivation 13/31

Questions from the Motivational Example

What about ⊥?
rev (rev ⊥) ≟ ⊥

Extend structural induction for handling ⊥.

Choose a programming logic to behaviours of programs on total and finite elements
of data structures [Bove, Dybjer and Sicard-Ramírez 2009; Dybjer 1985].
‘Morally’ correct reasoning [Danielsson, J. Hughes, Jansson and Gibbons 2006].

Motivation 14/31

Questions from the Motivational Example

What about ⊥?
rev (rev ⊥) ≟ ⊥

Extend structural induction for handling ⊥.
Choose a programming logic to behaviours of programs on total and finite elements
of data structures [Bove, Dybjer and Sicard-Ramírez 2009; Dybjer 1985].

‘Morally’ correct reasoning [Danielsson, J. Hughes, Jansson and Gibbons 2006].

Motivation 15/31

Questions from the Motivational Example

What about ⊥?
rev (rev ⊥) ≟ ⊥

Extend structural induction for handling ⊥.
Choose a programming logic to behaviours of programs on total and finite elements
of data structures [Bove, Dybjer and Sicard-Ramírez 2009; Dybjer 1985].
‘Morally’ correct reasoning [Danielsson, J. Hughes, Jansson and Gibbons 2006].

Motivation 16/31

Questions from the Motivational Example

What about if xs is an infinite list?
rev (rev xs) ≟ xs

Co-inductive data types ⇒ Co-induction for reasoning about them [Gibbons and
Hutton 2005].
Choose a programming logic to behaviours of programs on total (finite or potentially
unbounded) elements of data structures [Bove, Dybjer and Sicard-Ramírez 2012;
Dybjer and Sander 1989].

Motivation 17/31

Questions from the Motivational Example

What about if xs is an infinite list?
rev (rev xs) ≟ xs

Co-inductive data types ⇒ Co-induction for reasoning about them [Gibbons and
Hutton 2005].

Choose a programming logic to behaviours of programs on total (finite or potentially
unbounded) elements of data structures [Bove, Dybjer and Sicard-Ramírez 2012;
Dybjer and Sander 1989].

Motivation 18/31

Questions from the Motivational Example

What about if xs is an infinite list?
rev (rev xs) ≟ xs

Co-inductive data types ⇒ Co-induction for reasoning about them [Gibbons and
Hutton 2005].
Choose a programming logic to behaviours of programs on total (finite or potentially
unbounded) elements of data structures [Bove, Dybjer and Sicard-Ramírez 2012;
Dybjer and Sander 1989].

Motivation 19/31

Questions from the Motivational Example

The rev function is 𝑂(𝑛2). Why are we reasoning about it?
GHCi> rev [1..10^7]
*** Exception: stack overflow

The reverse function in the Data.List library (GHC 7.8.2) is 𝑂(𝑛):
reverse l = rev l []
where

rev [] a = a
rev (x:xs) a = rev xs (x:a)

Motivation 20/31

Questions from the Motivational Example

The rev function is 𝑂(𝑛2). Why are we reasoning about it?
GHCi> rev [1..10^7]
*** Exception: stack overflow

The reverse function in the Data.List library (GHC 7.8.2) is 𝑂(𝑛):
reverse l = rev l []
where

rev [] a = a
rev (x:xs) a = rev xs (x:a)

Motivation 21/31

Questions from the Motivational Example

In relation to the formal verification of find or gcd algorithms versus the verification of
real programs:
‘They are differences in kind. Babysitting for a sleeping child for one hour does not scale
up to raising a family of ten—the problems are essentially, fundamentally
different.’ [De Millo, Lipton and Perlis 1979, p. 278]

Motivation 22/31

Verification of Functional Programs: Research Areas

Area Research focuses on
Semantics definitions Defining new concepts

Transformation rules Programming transformations

Functional properties verification The input and output correspondence of pro-
grams

Non-functional properties verification Properties such as memory consumption or
parallel performance

Source: Achten, van Eekelen, Koopam and Morazán [2010].

Research Areas 23/31

(Incomplete) Time Line

1949 Turing, Alan M. [1949]. Checking a Large Routine. In: Report of a Conference on High Speed
Automatic Calculating.

1957 Backus, J. W., Beeber, R. J., Best, S., Goldberg, R., Haibt, L. M., Herrick, H. L., Nelson, R. A.,
Sayre, D., Sheridan, P. B., Stern, H., Ziller, I., Hughes, R. A. and Nutt, R. [1957]. The
FORTRAN Automatic Coding System. In: Proceedings Western Joint Computer Conference,
pp. 188–198. (FORTRAN)

1958 McCarthy, John [1960]. Recursive Functions of Symbolic Expressions and their Computation by
Machine, Part I. Communications of the ACM 3.4, pp. 184–195. doi: 10.1145/367177.367199.
(Lisp)

1960 Backus, J. W., Bauer, F. L., Green, J., Katz, C., McCarthy, J., Perlis, A. J., Rutishauser, H.,
Samelson, K., Vauquois, B., Wegstein, J. H., Wijngaarden, A. van and Woodger, M. [1960].
Report on the Algorithmic Language ALGOL 60. Communications of the ACM 3.5. Ed. by
Naur, Peter, pp. 299–314. doi: 10.1145/367236.367262. (ALGOL 60)

Time Line 24/31

https://doi.org/10.1145/367177.367199
https://doi.org/10.1145/367236.367262

(Incomplete) Time Line

1961 McCarthy, John [1961]. A Basis for a Mathematical Theory of Computation. In: Proceedings
Western Joint Computer Conference, pp. 225–238.

1966 Naur, Peter [1966]. Proof of Algorithms by General Snapshots. BIT 6.4, pp. 310–316.
1967 Floyd, Robert W. [1967]. Assigning Meanings to Programs. In: Mathematical Aspects of

Computer Science. Ed. by Schwartz, Jacob T. Vol. 19. Proceedings of Symposia in Applied
Mathematics, pp. 19–32.

1968 ‘In 1968, a NATO Conference on Software Engineering was held in Garmisch, Germany, …For the
first time, a consensus emerged that there really was a software crisis, that programming was not
very well understood.’ [Gries 1981, p. 296]

1969 Hoare, C. A. R. [1969]. An Axiomatic Basis for Computer Programming. Communications of the
ACM 12.10, 576–580(3). doi: 10.1145/363235.363259.

Time Line 25/31

https://doi.org/10.1145/363235.363259

(Incomplete) Time Line

1971 Martin-Löf, Per [1971]. A Theory of Types. Tech. rep. University of Stockholm.
1973 Martin-Löf, Per [1975]. About Models for Intuitionistic Type Theories and the Notion of

Definitional Equality. In: Proceedings of the Third Scandinavian Logic Symposium. Ed. by
Kanger, Stig. Vol. 82. Studies in Logic and the Foundations of Mathematics. Elsevier,
pp. 81–109.

1979 Martin-Löf, Per [1982]. Constructive Mathematics and Computer Programming. In: Logic,
Methodology and Philosophy of Science VI (1979). Ed. by Cohen, L. J., Los, J., Pfeiffer, H. and
Podewski, K.-P. Vol. 104. Studies in Logic and the Foundations of Mathematics. North-Holland
Publishing Company, pp. 153–175. doi: 10.1016/S0049-237X(09)70189-2.

1981 Nordström, Bengt [1981]. Programming in Constructive Set Theory: Some Examples. In:
Proceedings of the 1981 Conference on Functional Programming Languages and Computer
Architecture (FPCA 1981). ACM, pp. 141–154.

Time Line 26/31

https://doi.org/10.1016/S0049-237X(09)70189-2

References

Achten, Peter, van Eekelen, Marko, Koopam, Pieter and Morazán, Marco T. (2010). Trends in Trends in
Functional Programming 1999/2000 versus 2007/2008. Higher-Order Symbolic Computation 23.4,
pp. 465–487 (cit. on p. 23).

Backus, J. W., Bauer, F. L., Green, J., Katz, C., McCarthy, J., Perlis, A. J., Rutishauser, H., Samelson,
K., Vauquois, B., Wegstein, J. H., Wijngaarden, A. van and Woodger, M. (1960). Report on the
Algorithmic Language ALGOL 60. Communications of the ACM 3.5. Ed. by Naur, Peter, pp. 299–
314. doi: 10.1145/367236.367262 (cit. on p. 24).

Backus, J. W., Beeber, R. J., Best, S., Goldberg, R., Haibt, L. M., Herrick, H. L., Nelson, R. A., Sayre, D.,
Sheridan, P. B., Stern, H., Ziller, I., Hughes, R. A. and Nutt, R. (1957). The FORTRAN Automatic
Coding System. In: Proceedings Western Joint Computer Conference, pp. 188–198 (cit. on p. 24).

Bird, Richard and Wadler, Philip (1988). Introduction to Functional Programming. Prentice Hall Inter-
national (cit. on p. 9).

Bove, Ana, Dybjer, Peter and Sicard-Ramírez, Andrés (2009). Embedding a Logical Theory of Construc-
tions in Agda. In: Proceedings of the 3rd Workshop on Programming Languages Meets Program
Verification (PLPV 2009), pp. 59–66 (cit. on pp. 13–16).

References 27/31

https://doi.org/10.1145/367236.367262

References

Bove, Ana, Dybjer, Peter and Sicard-Ramírez, Andrés (2012). Combining Interactive and Automatic
Reasoning in First Order Theories of Functional Programs. In: Foundations of Software Science
and Computation Structures (FoSSaCS 2012). Ed. by Birkedal, Lars. Vol. 7213. Lecture Notes in
Computer Science. Springer, pp. 104–118 (cit. on pp. 17–19).

Danielsson, Nils Anders, Hughes, John, Jansson, Patrik and Gibbons, Jeremy (2006). Fast and Loose
Reasoning is Morally Correct. In: Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL 2006), pp. 206–217. doi: 10.1145/1111037.1111056
(cit. on pp. 13–16).

De Millo, Richard A., Lipton, Richard J. and Perlis, Alan J. (1979). Social Processes and Proofs of
Theorems and Programs. Communications of the ACM 22.5, pp. 271–280. doi: 10.1145/359104.
359106 (cit. on p. 22).

Dybjer, Peter (1985). Program Verification in a Logical Theory of Constructions. In: Functional Program-
ming Languages and Computer Architecture. Ed. by Jouannaud, Jean-Pierre. Vol. 201. Lecture Notes
in Computer Science. Springer, pp. 334–349. doi: 10.1007/3-540-15975-4_46 (cit. on pp. 13–16).

References 28/31

https://doi.org/10.1145/1111037.1111056
https://doi.org/10.1145/359104.359106
https://doi.org/10.1145/359104.359106
https://doi.org/10.1007/3-540-15975-4_46

References

Dybjer, Peter and Sander, Herbert P. (1989). A Functional Programming Approach to the Specification
and Verification of Concurrent Systems. Formal Aspects of Computing 1, pp. 303–319 (cit. on pp. 17–
19).

Floyd, Robert W. (1967). Assigning Meanings to Programs. In: Mathematical Aspects of Computer
Science. Ed. by Schwartz, Jacob T. Vol. 19. Proceedings of Symposia in Applied Mathematics,
pp. 19–32 (cit. on p. 25).

Gibbons, Jeremy and Hutton, Graham (2005). Proof Methods for Corecursive Programs. Fundamenta
Informaticae XX, pp. 1–14 (cit. on pp. 17–19).

Gries, David (1981). The Science of Programming. Springer-Verlag. doi: 10.1007/978-1-4612-5983-1
(cit. on p. 25).

Hoare, C. A. R. (1969). An Axiomatic Basis for Computer Programming. Communications of the ACM
12.10, 576–580(3). doi: 10.1145/363235.363259 (cit. on p. 25).

Martin-Löf, Per (1971). A Theory of Types. Tech. rep. University of Stockholm (cit. on p. 26).
— (1975). About Models for Intuitionistic Type Theories and the Notion of Definitional Equality. In:

Proceedings of the Third Scandinavian Logic Symposium. Ed. by Kanger, Stig. Vol. 82. Studies in
Logic and the Foundations of Mathematics. Elsevier, pp. 81–109 (cit. on p. 26).

References 29/31

https://doi.org/10.1007/978-1-4612-5983-1
https://doi.org/10.1145/363235.363259

References

Martin-Löf, Per (1982). Constructive Mathematics and Computer Programming. In: Logic, Methodology
and Philosophy of Science VI (1979). Ed. by Cohen, L. J., Los, J., Pfeiffer, H. and Podewski, K.-P.
Vol. 104. Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Company,
pp. 153–175. doi: 10.1016/S0049-237X(09)70189-2 (cit. on p. 26).

McCarthy, John (1960). Recursive Functions of Symbolic Expressions and their Computation by Machine,
Part I. Communications of the ACM 3.4, pp. 184–195. doi: 10.1145/367177.367199 (cit. on p. 24).

— (1961). A Basis for a Mathematical Theory of Computation. In: Proceedings Western Joint Computer
Conference, pp. 225–238 (cit. on p. 25).

Naur, Peter (1966). Proof of Algorithms by General Snapshots. BIT 6.4, pp. 310–316 (cit. on p. 25).
Nordström, Bengt (1981). Programming in Constructive Set Theory: Some Examples. In: Proceedings

of the 1981 Conference on Functional Programming Languages and Computer Architecture (FPCA
1981). ACM, pp. 141–154 (cit. on p. 26).

Swierstra, Wouter and Altenkirch, Thorsten (2007). Beauty in the Beast. A Functional Semantics for the
Awkward Squad. In: Proceedings of the ACM SIGPLAN 2007 Haskell Workshop, pp. 25–36 (cit. on
pp. 5, 6).

References 30/31

https://doi.org/10.1016/S0049-237X(09)70189-2
https://doi.org/10.1145/367177.367199

References

Tassey, Gregory (2002). The Economic Impacts of Inadequate Infrastructure for Software Testing. Tech.
rep. National Institute of Standards and Technology. US Department of Commerce (cit. on p. 4).

Turing, Alan M. (1949). Checking a Large Routine. In: Report of a Conference on High Speed Automatic
Calculating (cit. on p. 24).

References 31/31

	Administrative Information
	Preliminaries
	Motivation
	Research Areas
	Time Line
	References

