Verification of Functional Programs Induction

Andrés Sicard-Ramírez

EAFIT University
Semester 2014-1

Source Code

All the source code have been tested with Agda 2.3.2, Coq 8.4pl3 and Isabelle 2013-2.

The Principle of Mathematical Induction

The principle of mathematical induction
Let $A(x)$ be a propositional function. To prove $A(x)$ for all $x \in \mathbb{N}$, it suffices prove:

- the basis $A(0)$ and
- the induction step, that $A(n) \Rightarrow A(n+1)$, for all $n \in \mathbb{N}$ ($A(n)$ is called the induction hypothesis).

The Principle of Mathematical Induction

First-order logic version
Let $A(x)$ be a formula with free variable x. For each formula $A(x)$:

$$
[A(0) \wedge \forall x . A(x) \Rightarrow A(x+1)] \Rightarrow \forall x . A(x) \quad \text { (axiom schema of induction) }
$$

The Principle of Mathematical Induction

First-order logic version
Let $A(x)$ be a formula with free variable x. For each formula $A(x)$:

$$
[A(0) \wedge \forall x . A(x) \Rightarrow A(x+1)] \Rightarrow \forall x . A(x) \quad \text { (axiom schema of induction) }
$$

Equivalent formulations

$$
\begin{aligned}
& A(0) \Rightarrow[(\forall x \cdot A(x) \Rightarrow A(x+1)) \Rightarrow \forall x \cdot A(x)] \\
& A(0) \Rightarrow(\forall x \cdot A(x) \Rightarrow A(x+1)) \Rightarrow \forall x \cdot A(x)
\end{aligned} \quad \text { (by exportation) } \quad \text { (right-assoc. conditional) }
$$

The Principle of Mathematical Induction

First-order logic version
Let $A(x)$ be a formula with free variable x. For each formula $A(x)$:

$$
[A(0) \wedge \forall x . A(x) \Rightarrow A(x+1)] \Rightarrow \forall x . A(x) \quad \text { (axiom schema of induction) }
$$

Equivalent formulations

$$
\begin{array}{lr}
A(0) \Rightarrow[(\forall x \cdot A(x) \Rightarrow A(x+1)) \Rightarrow \forall x \cdot A(x)] & \text { (by exportation) } \\
A(0) \Rightarrow(\forall x \cdot A(x) \Rightarrow A(x+1)) \Rightarrow \forall x \cdot A(x) & \text { (right-assoc. conditional) }
\end{array}
$$

Inference rule style

$$
\frac{A(0) \quad \forall x \cdot A(x) \Rightarrow A(x+1)}{\forall x \cdot A(x)}
$$

The Principle of Mathematical Induction

Higher-order logic
'The adjetive 'first-order' is used to distinguish the languages... from those in which are predicates having other predicates or functions as arguments, or quantification over functions or predicates, or both.' [Mendelson (1965) 1997, p. 56]

The Principle of Mathematical Induction

Higher-order logic

'The adjetive 'first-order' is used to distinguish the languages... from those in which are predicates having other predicates or functions as arguments, or quantification over functions or predicates, or both.' [Mendelson (1965) 1997, p. 56]

Second-order logic version
Let X be a predicate variable.

$$
\forall X \cdot X(0) \Rightarrow(\forall x \cdot X(x) \Rightarrow X(x+1)) \Rightarrow \forall x \cdot X(x) \quad \text { (axiom of induction) }
$$

The Principle of Mathematical Induction

Historical remark
Dedekind [(1888) 2005] and Peano [(1889) 1967] axiom: $1 \in \mathbb{N}$.

The Principle of Mathematical Induction

Remark

Coq generates the induction principles associated to the inductively defined (data) types.
Example (Coq)
The inductive data type for natural numbers.
Require Import Unicode.Utf8.

Inductive nat : Set :=
| 0 : nat
| S : nat \rightarrow nat.

The Principle of Mathematical Induction

```
Example (continuation)
The Check nat_ind command yields:
    nat_ind : \forall P : nat }->\mathrm{ Prop,
    P 0 -> (\forall n : nat, P n > P (S n)) -> \forall n : nat, P n
```


The Principle of Mathematical Induction

Example (continuation)
The Check nat_ind command yields:

```
nat_ind : \forall P : nat }->\mathrm{ Prop,
    P 0 -> (\forall n : nat, P n > P (S n)) -> \forall n : nat, P n
```

The Check nat_rec command yields:

```
nat_rec : \forall P : nat -> Set,
    P O f (\forall n : nat, P n -> P (S n)) -> V n : nat, P n
```


The Principle of Mathematical Induction

Example (continuation)
The Check nat_ind command yields:

```
nat_ind : \forall P : nat }->\mathrm{ Prop,
    P O -> (\forall n : nat, P n -> P (S n)) -> \forall n : nat, P n
```

The Check nat_rec command yields:

```
nat_rec : \forall P : nat -> Set,
    P O f (\forall n : nat, P n -> P (S n)) -> \forall n : nat, P n
```

The Check nat_rect command yields:

```
nat_rec : \forall P : nat -> Type,
    P O f (\forall n : nat, P n -> P (S n)) -> \forall n : nat, P n
```


The Principle of Mathematical Induction

Implementation remark
What happen if instead of using
Inductive nat : Set := 0 : nat | S : nat \rightarrow nat we renamed the data type nat by

Inductive P : Set := $0: \mathrm{P} \mid \mathrm{S}: \mathrm{P} \rightarrow \mathrm{P}$
or we renamed the data constructor S by
Inductive nat : Set := 0 : nat | P : nat \rightarrow nat ?

Source: McBride and McKinna [2004]

The Principle of Mathematical Induction

Remark

Isabelle also generates the induction principles associated to the inductively defined (data) types.

Example (Isabelle)
The inductive data type for natural numbers.

```
datatype nat = Z | S nat
```


The Principle of Mathematical Induction

Remark

Isabelle also generates the induction principles associated to the inductively defined (data) types.

Example (Isabelle)
The inductive data type for natural numbers.
datatype nat $=Z \mid S$ nat
The print_theorems command yields (among others):
nat.induct: ?P Z $\Rightarrow \forall x$. ?P $x \Rightarrow$?P (S x)) \Rightarrow ?P ?nat

The Principle of Mathematical Induction

Remark

Agda doesn't generate the induction principles, but the user can use pattern matching on the inductively defined (data) types.

Example (Agda)
The inductive data type for natural numbers.

```
data \mathbb{N}: Set where
```

zero : \mathbb{N}
succ : $\mathbb{N} \rightarrow \mathbb{N}$

The Principle of Mathematical Induction

```
Example (continuation)
The principle of mathematical induction.
N}\mathrm{ -ind : (A : N }->\mathrm{ Set) }
    A zero }
    (\forall n -> A n -> A (succ n)) ->
    | n A n
N}\mathrm{ -ind A A0 h zero = A0
N}\mathrm{ -ind A A0 h (succ n) = h n (N-ind A A0 h n)
```


The Principle of Mathematical Induction

Remark

In Agda, Coq and Isabelle, the 'axiom of induction' is not an axiom

The Principle of Mathematical Induction

Remark

In Agda, Coq and Isabelle, the 'axiom of induction' is not an axiom (the introduction rules induce the induction principles).

Course-of-Values Induction

Course-of-values induction (strong or complete induction)
Let $A(x)$ be a propositional function. To prove $A(x)$ for all $x \in \mathbb{N}$, it is enough to prove:

$$
(\forall 0 \leq k<n)(A(k) \Rightarrow A(n)), \text { for all } n \in \mathbb{N} .
$$

Course-of-Values Induction

Example

The Fibonacci numbers are defined by $F_{0}=0, F_{1}=1$ and $F_{k+2}=F_{k}+F_{k+1}$, so $F=\{0,1,1,2,3,5,8,13,21, \ldots\}$.

Course-of-Values Induction

Example

The Fibonacci numbers are defined by $F_{0}=0, F_{1}=1$ and $F_{k+2}=F_{k}+F_{k+1}$, so $F=\{0,1,1,2,3,5,8,13,21, \ldots\}$.
Let Φ and $\hat{\Phi}$ be the roots of the equation $x^{2}-x-1$:

$$
\Phi=\frac{1+\sqrt{5}}{2} \text { and } \hat{\Phi}=\frac{1-\sqrt{5}}{2}
$$

so $\Phi^{2}=\Phi+1$ and $\hat{\Phi}^{2}=\hat{\Phi}+1$. Then [Bird and Wadler 1988, p. 107.]

$$
F_{k}=\frac{1}{\sqrt{5}}\left(\Phi^{k}-\hat{\Phi}^{k}\right), \text { for all } k \in \mathbb{N} .
$$

Mathematical and Course-of-Values Induction

Theorem
Mathematical induction and course-of-values induction are equivalent [Winskel 2010].

Structural Induction

Structural induction
Let $A(X)$ be a propositional function about the structures X that are defined by some recursive/inductive definition.

Structural Induction

Structural induction
Let $A(X)$ be a propositional function about the structures X that are defined by some recursive/inductive definition.

To prove $A(X)$ for all the structures X, it suffices prove [Hopcroft, Motwani and Ullman 2007]:

- $A(X)$ for the basis structure(s) of X and

Structural Induction

Structural induction
Let $A(X)$ be a propositional function about the structures X that are defined by some recursive/inductive definition.

To prove $A(X)$ for all the structures X, it suffices prove [Hopcroft, Motwani and Ullman 2007]:

- $A(X)$ for the basis structure(s) of X and
- given a structure X whose recursive/inductive definition says is formed from Y_{1}, \ldots, Y_{k}, that $A(X)$ assuming that the properties $A\left(Y_{1}\right), \ldots, A\left(Y_{k}\right)$ hold.

Structural Induction for Lists

Example (Coq)

The parametric inductive data type.
Require Import Unicode.Utf8.

Inductive list (A : Type) : Type := | nil : list A
| cons : A \rightarrow list A \rightarrow list A.

Structural Induction for Lists

Example (Coq)

The parametric inductive data type.
Require Import Unicode.Utf8.

```
Inductive list (A : Type) : Type :=
| nil : list A
| cons : A -> list A }->\mathrm{ list A.
```

The induction principle.

```
list_ind : \forall (A : Type) (P : list A -> Prop),
    P (nil A) ->
    (\forall (a : A) (l : list A), P l -> P (cons A a l)) ->
    \forall l : list A, P l
```


Structural Induction for Lists

Example (Isabelle)

The polymorphic inductive data type.
datatype 'a list = Nil | Cons 'a "'a list"

Structural Induction for Lists

Example (Isabelle)

The polymorphic inductive data type.

```
    datatype 'a list = Nil | Cons 'a "'a list"
```

The induction principle.

```
list.induct: ?P Nil \(\Rightarrow \forall x 1 \times 2 . \quad\) ? P x \(\Rightarrow\) ? \(\mathrm{P}(\) (Cons x1 x2)) \(\Rightarrow\)
    ?P ?list
```


Structural Induction for Lists

Example (Agda)

The parametric inductive data type.
data List (A : Set) : Set where
[] : List A
::_ : A \rightarrow List A \rightarrow List A

Structural Induction for Lists

Example (Agda)
The parametric inductive data type.

```
data List (A : Set) : Set where
    [] : List A
    _:_ : A -> List A -> List A
```

The induction principle.

```
List-ind : {A : Set} (B : List A -> Set) >
    B [] }
    ((x : A) (xs : List A) -> B xs -> B (x :: xs)) ->
    \forall xs -> B xs
List-ind B B[] h [] = B[]
List-ind B B[] h (x :: xs) = h x xs (List-ind B B[] h xs)
```


Well-Founded Induction

Definition

Let \prec be a binary relation on a set A. The relation \prec is a well-founded relation iff every non-empty subset $S \subseteq A$ has a minimal element, that is,

$$
(\forall S \subseteq A)[S \neq \emptyset \Rightarrow(\exists m \in S)(\forall s \in S)(s \nprec m)]
$$

Well-Founded Induction

Definition

Let \prec be a binary relation on a set A. The relation \prec is a well-founded relation iff every non-empty subset $S \subseteq A$ has a minimal element, that is,

$$
(\forall S \subseteq A)[S \neq \emptyset \Rightarrow(\exists m \in S)(\forall s \in S)(s \nprec m)] .
$$

Definition (Well-founded induction)
Let \prec be a well-founded relation on a set A and $A(x)$ a propositional function. To prove $A(x)$ for all $a \in A$, it suffices prove:

$$
(\forall b \prec a)(A(b) \Rightarrow A(a)), \text { for all } a \in A \text {. }
$$

Well-Founded Induction

Example

Let \prec be the well-founded relation on \mathbb{N} given by the graph of the successor function $n \mapsto n+1$.

Well-Founded Induction

Example

Let \prec be the well-founded relation on \mathbb{N} given by the graph of the successor function $n \mapsto n+1$.

Then mathematical induction is a special case of well-founded induction.

Well-Founded Induction

Example

Let \prec be the well-founded relation on \mathbb{N} given by the graph of the successor function $n \mapsto n+1$.

Then mathematical induction is a special case of well-founded induction.

Example

Let \prec be the well-founded relation 'less than' on \mathbb{N}.

Well-Founded Induction

Example

Let \prec be the well-founded relation on \mathbb{N} given by the graph of the successor function $n \mapsto n+1$.

Then mathematical induction is a special case of well-founded induction.

Example

Let \prec be the well-founded relation 'less than’ on \mathbb{N}.
Then course-of-values induction is a special case of well-founded induction.

Well-Founded Induction

Example

'If we take \prec to be the relation between expressions such that $a \prec b$ holds iff a is an immediate sub-expression of b we obtain the principle of structural induction as a special case of well-founded induction.' [Winskel 2010, p. 93]

Empty Type

In type theory $a: A$ denotes that a is a term (or proof term) of type A.

Empty Type

In type theory $a: A$ denotes that a is a term (or proof term) of type A.
Under the proposition-as-types principle, the empty type represents the false (absurdity or contradiction) proposition [Sørensen and Urzyczyn 2006].

Empty Type

In type theory $a: A$ denotes that a is a term (or proof term) of type A.
Under the proposition-as-types principle, the empty type represents the false (absurdity or contradiction) proposition [Sørensen and Urzyczyn 2006].

Therefore e : EmptyType represents a contradiction in our formalisation.

Empty Type

```
Example (Agda)
    data \perp : Set where
    \perp-elim : {A : Set} -> \perp -> A
    \perp-elim () -- The absurd pattern.
```


Empty Type

Example (Coq)

(From the standard library)

Inductive Empty_set : Set :=.

Empty_set_rect : \forall ($\mathrm{P}:$ Empty_set \rightarrow Type) (e : Empty_set), P e

Empty Type

```
Example (Coq)
(From the standard library)
    Inductive Empty_set : Set :=.
    Empty_set_rect : \forall (P : Empty_set -> Type) (e : Empty_set), P e
    Theorem emptySetElim {A : Set}(e : Empty_set) : A.
        apply (Empty_set_rect (fun _ => A) e).
    Qed.
```


Empty Type

```
Example (Coq)
(From the standard library)
    Inductive Empty_set : Set :=.
    Empty_set_rect : \forall (P : Empty_set -> Type) (e : Empty_set), P e
    Theorem emptySetElim {A : Set}(e : Empty_set) : A.
        apply (Empty_set_rect (fun _ => A) e).
    Qed.
    Theorem emptySetElim' {A : Set}(e : Empty_set) : A.
        elim e.
    Qed.
```


Strictly Positive Inductive Types

Remark

The inductive types can be defined/represented as least fixed-points of appropriated functions (functors).

Strictly Positive Inductive Types

Remark

The inductive types can be defined/represented as least fixed-points of appropriated functions (functors).

Example

Let 1 be the unity type, and + and \times be the operators for disjoint union and Cartesian product, respectively. Then

$$
\begin{aligned}
\text { Nat } & :=\mu X .1+X, \\
\text { List } A & :=\mu X .1+(A \times X) .
\end{aligned}
$$

Strictly Positive Inductive Types

Definition

'The occurrence of a type variable is positive iff it occurs within an even number of left hand sides of \rightarrow-types, it is strictly positive iff it never occurs on the left hand side of a \rightarrow-type.' [Abel and Altenkirch 2000, p. 21].

Strictly Positive Inductive Types

Definition

Let $\mu X . F(X)$ be an inductive type. The type $\mu X . F(X)$ is a strictly positive type if X occurs strictly positive in $F(X)$.

Strictly Positive Inductive Types

Definition

Let $\mu X . F(X)$ be an inductive type. The type $\mu X . F(X)$ is a strictly positive type if X occurs strictly positive in $F(X)$.

Proof assistants

Agda, Coq and Isabelle accept only strictly positive inductive types.

Strictly Positive Inductive Types

Some issues with non-strictly positive inductive types

- Infinite unfolding

See source code in the course web page.

Strictly Positive Inductive Types

Some issues with non-strictly positive inductive types

- Infinite unfolding

See source code in the course web page.

- Proving absurdity

See source code in the course web page.

Strictly Positive Inductive Types

The following examples of inductive types* are rejected by Agda (Coq and Isabelle) because they are not strictly positive inductive types.

Example (negative type)

$$
\mathrm{D}:=\mu X . X \rightarrow X
$$

data D : Set where
lam : $(D \rightarrow D) \rightarrow D$
-- D is not strictly positive, because it occurs to the left
-- of an arrow in the type of the constructor lam in the
-- definition of D.

[^0]
Strictly Positive Inductive Types

Example (positive, non-strictly positive type)

$$
\mathrm{P}:=\mu X .(X \rightarrow 2) \rightarrow 2
$$

data P : Set where
p : ((P Bool) \rightarrow Bool) $\rightarrow P$
-- P is not strictly positive, because it occurs to the left
-- of an arrow in the type of the constructor p in the
-- definition of P.

References

Abel, Andreas and Altenkirch, Thorsten (2000). A Predicative Strong Normalisation Proof for a λ Calculus with Interleaving Inductive Types. In: Types for Proofs and Programs (TYPES 1999). Ed. by Coquand, Thierry et al. Vol. 1956. Lecture Notes in Computer Science. Springer, pp. 21-40 (cit. on p. 50).
Bird, Richard and Wadler, Philip (1988). Introduction to Functional Programming. Prentice Hall International (cit. on pp. 22, 23).
Dedekind, Richard [1888] (2005). Was sind und was sollen die Zahlen? In: From Kant to Hilbert: A Source Book in the Foundations of Mathematics. Vol. II. Clarendon Press, pp. 787-833 (cit. on p. 9).
Hopcroft, John E., Motwani, Rajeev and Ullman, Jefferey D. (2007). Introduction to Automata theory, Languages, and Computation. 3rd ed. Pearson Education (cit. on pp. 25-27).
McBride, Conor and McKinna, James (2004). Functional Pearl: I am not a Number—I am a Free Variable. In: Proceedings of the ACM SIGPLAN 2004 Haskell Workshop, pp. 1-9 (cit. on p. 14).
Mendelson, Elliott [1965] (1997). Introduction to Mathematical Logic. 4th ed. Chapman \& Hall (cit. on pp. 7, 8).

References

Peano, Giuseppe [1889] (1967). The Principles of Arithmetic, Presented by a New Method. In: From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931. Ed. by van Heijenoort, Jean. Translation of 'Arithmetices principia, nova methodo exposita' by the editor. Harvard University Press, pp. 83-97 (cit. on p. 9).
Sørensen, Morten-Heine and Urzyczyn, Paul (2006). Lectures on the Curry-Howard Isomorphism. Vol. 149.
Studies in Logic and the Foundations of Mathematics. Elsevier (cit. on pp. 41-43).
Winskel, Glynn (2010). Set Theory for Computer Science. (Cit. on pp. 24, 40).

[^0]: *Adapted from the Coq'Art, Matthes' PhD thesis and Agda's source code.

