
ST0244 Programming Languages
2. Syntax

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2023-2

Preliminaries
Conventions

The number and page numbers assigned to chapters, examples, exercises, figures, quotes,
sections and theorems on these slides correspond to the numbers assigned in the textbook [Lee
2017].

The source code examples are in course’s repository.

Preliminaries 2/44

Introduction
Syntax and Semantics

Syntax is how programs look (well-formed programs)

Semantics is how programs work (meaning of programs)

Question
When you are learning/using a programming language are its syntax and its semantics equally
important?

Introduction 3/44

Introduction
Syntax and Semantics

Syntax is how programs look (well-formed programs)

Semantics is how programs work (meaning of programs)

Question
When you are learning/using a programming language are its syntax and its semantics equally
important?

Introduction 4/44

Terminology
Syntax and semantics issues

Type Static (compile-time) Dynamic (run-time)
Syntax ✓
Semantic ✓ ✓

Terminology 5/44

Terminology
Example (p. 32)
Is the code

a = b + c;

a correct C++ statement?

Some questions:
1. Do b and c have values? (answered in run-time, dynamic

semantic issue or answered in compile-time, static semantic
issue)

2. Have b and c been declared as a type that allows the +
operation? (answered in compile-time, static semantic
issue)

3. Is a assignment compatible with the result of the expression
b + c? (answered in compile-time, static semantic issue)

4. Does the assignment statement have the proper form?
(answered in compile-time, syntactic issue)

Terminology 6/44

Terminology
Example (p. 32)
Is the code

a = b + c;

a correct C++ statement?

Some questions:
1. Do b and c have values? (answered in run-time, dynamic

semantic issue or answered in compile-time, static semantic
issue)

2. Have b and c been declared as a type that allows the +
operation? (answered in compile-time, static semantic
issue)

3. Is a assignment compatible with the result of the expression
b + c? (answered in compile-time, static semantic issue)

4. Does the assignment statement have the proper form?
(answered in compile-time, syntactic issue)

Terminology 7/44

Terminology
Definition
A terminal symbol (or token) is an elementary symbol of the language.

Example
Keywords, types, operators, numbers, identifiers, among others, are terminal symbols in a
programming language.

Terminology 8/44

Terminology
Definition
A non-terminal symbol (or syntactic category or syntactic variable) represents a sequence of
terminal symbols.

Example
C++, Java, Python and other

Statements, expressions, if-statements, among others.

Haskell, Standard ML and other

Types, expressions, function applications, function abstractions, among others.

Terminology 9/44

Backus-Naur Form (BNF)
Definition
Backus Naur-Form (BNF) is a formal (i.e. non-ambiguous) meta-language (i.e. a language for
describing or analysing other language) for describing language syntax.

Backus-Naur Form (BNF) 10/44

Backus-Naur Form (BNF)
BNF Rules
A BNF for a language is a set of rules such as

⟨non-terminal⟩ ::= expression1 | expression2 | . . . | expressionn

where
(i) expressioni is a string of terminals and non-terminals,
(ii) the symbol ::= means that the non-terminal symbol on the left must be replaced with one

expression on the right and
(iii) the symbol | means a choice.

Backus-Naur Form (BNF) 11/44

Backus-Naur Form (BNF)
Example
Let P a set of propositional letters (atomic formulae) and let p ∈ P , we can define the wff’s
(well-formed formulae) of propositional logic by

⟨formula⟩ ::= p

| ¬ ⟨formula⟩
| (⟨formula⟩ ∧ ⟨formula⟩)
| (⟨formula⟩ ∨ ⟨formula⟩)
| (⟨formula⟩ → ⟨formula⟩)
| (⟨formula⟩ ↔ ⟨formula⟩)

Remark
Note the recursive definition of wff’s.

Backus-Naur Form (BNF) 12/44

Backus-Naur Form (BNF)
Example
A BNF describing the integer numbers, with or without sign (e.g. −344, 56, +9784, 8, 0000).

⟨integer⟩ ::= ⟨sign⟩⟨digits⟩ | ⟨digits⟩

⟨digits⟩ ::= ⟨digit⟩⟨digits⟩ | ⟨digit⟩

⟨digit⟩ ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

⟨sign⟩ ::= + | -

Backus-Naur Form (BNF) 13/44

Backus-Naur Form (BNF)
Example
The set of λ-terms of the λ-calculus can be defined by

⟨variable⟩ ::= x | x’ | x” | . . .

⟨λ-term⟩ ::= ⟨variable⟩
| (λ ⟨variable⟩ . ⟨λ-term⟩)
| (⟨λ-term⟩ ⟨λ-term⟩)

Backus-Naur Form (BNF) 14/44

Backus-Naur Form (BNF)
Example
A BNF describing a part of Java (pp. 33–34).

⟨primitive-type⟩ ::= boolean | char | byte | short | int | long | float | . . .

⟨argument-list⟩ ::= ⟨expression⟩ | ⟨argument-list⟩ , ⟨expression⟩

⟨selection-statement⟩ ::= if (⟨expression⟩) ⟨statement⟩
| if (⟨expression⟩) ⟨statement⟩ else ⟨statement⟩
| switch (⟨expression⟩) ⟨block⟩

⟨m[ethod]-declaration⟩ ::= ⟨modifiers⟩ ⟨type-specifier⟩ ⟨m-declarator⟩ ⟨throws-clause⟩ ⟨m-body⟩
| ⟨modifiers⟩ ⟨type-specifier⟩ ⟨m-declarator⟩ ⟨m-body⟩
| ⟨type-specifier⟩ ⟨m-declarator⟩ ⟨throws-clause⟩ ⟨m-body⟩
| ⟨type-specifier⟩ ⟨m-declarator⟩ ⟨m-body⟩

Backus-Naur Form (BNF) 15/44

Backus-Naur Form (BNF)
Extended BNF (EBNF)
We shall extended BNF with the following definitions:

i) ‘item?’ or ‘[item]’ means the item is optional.

ii) ‘item*’ or ‘{item}’ means zero or more occurrences of the item are allowable.

iii) ‘item+’ means one or more occurrences of the item are allowable.

iv) Parentheses may be used for grouping.

Backus-Naur Form (BNF) 16/44

Context-Free Grammars
Definition
A context-free grammar is a 4-tuple

G = (N , T , P, S),

where

N is a finite set of non-terminal symbols,
T is a finite set of terminal symbols,
P is a finite set of productions of the form A → α , with A ∈ N and α ∈ {N ∪ T }∗,
S ∈ N is the start symbol,

{N ∪ T }∗ : String of terminals and non-terminals symbols including the empty word ϵ.

Context-Free Grammar 17/44

Context-Free Grammars
Example (infix expressions grammar (§ 2.3.1))
We can define a context-free grammar (N , T , P, E) for infix expressions by

N = {E, T, F},

T = {identifier, number, +, −, ∗, /, (,)},

and the productions in the set P are

E → E + T | E − T | T

T → T ∗ F | T/F | F

F → (E) | identifier | number

Context-Free Grammar 18/44

Derivations
Definition
A sentence of a grammar G is a string of tokens (terminal symbols) from G.

Example
Two sentences of the infix expressions grammar are (5*x)+y and)4++(.

Derivations 19/44

Derivations
Definition
A sentence of a grammar G is a string of tokens (terminal symbols) from G.

Example
Two sentences of the infix expressions grammar are (5*x)+y and)4++(.

Derivations 20/44

Derivations
Definition
A sentential form of a grammar G is a string of terminals and non-terminals symbols from G.

Example
Two sentential forms of the infix expressions grammar are (T ∗ F) + T and (5 ∗ F) + T .

Derivations 21/44

Derivations
Definition
A sentential form of a grammar G is a string of terminals and non-terminals symbols from G.

Example
Two sentential forms of the infix expressions grammar are (T ∗ F) + T and (5 ∗ F) + T .

Derivations 22/44

Derivations
Definition
A derivation of a sentence S in a grammar G is a sequence of sentential forms of G that starts
with the start symbol of G and ends with S.

Remark
Every sentential form in the derivation is obtained from the previous one by replacing A ∈ N
(non-terminal symbol) by α ∈ {N ∪ T }∗ (string of terminals and non-terminals symbols), if
A → α is a production of G.

Derivations 23/44

Derivations
Definition
A derivation of a sentence S in a grammar G is a sequence of sentential forms of G that starts
with the start symbol of G and ends with S.

Remark
Every sentential form in the derivation is obtained from the previous one by replacing A ∈ N
(non-terminal symbol) by α ∈ {N ∪ T }∗ (string of terminals and non-terminals symbols), if
A → α is a production of G.

Derivations 24/44

Derivations
Definition
A sentence S of a grammar G is valid iff there exists at least one derivation for S in G.

Derivations 25/44

Derivations
Example
The sentence (5*x)+y of the infix expressions grammar is valid because has the following
derivation:

E ⇒ E + T

⇒ T + T

⇒ F + T

⇒ (E) + T

⇒ (T) + T

⇒ (T ∗ F) + T

⇒ (F ∗ F) + T

⇒ (5 ∗ F) + T

⇒ (5 ∗ x) + T

⇒ (5 ∗ x) + F

⇒ (5 ∗ x) + y



E → E + T

E → E − T

E → T

T → T ∗ F

T → T/F

T → F

F → (E)
F → identifier
F → number


Derivations 26/44

Derivations
Definition
Let G be a grammar. The language of G, denoted L(G), is the set of valid sentences of G.

Derivations 27/44

Derivations
Types of derivations

Left-most derivation (always replace the left-most non-terminal symbol).

Right-most derivation (always replace the right-most non-terminal symbol).

Derivations 28/44

Derivations
Example
Left-most and right-most derivations of (5*x)+y.

left-most



E ⇒ E + T

⇒ T + T

⇒ F + T

⇒ (E) + T

⇒ (T) + T

⇒ (T ∗ F) + T

⇒ (F ∗ F) + T

⇒ (5 ∗ F) + T

⇒ (5 ∗ x) + T

⇒ (5 ∗ x) + F

⇒ (5 ∗ x) + y

right-most



E ⇒ E + T

⇒ E + F

⇒ E + y

⇒ T + y

⇒ F + y

⇒ (E) + y

⇒ (T) + y

⇒ (T ∗ F) + y

⇒ (T ∗ x) + y

⇒ (F ∗ x) + y

⇒ (5 ∗ x) + y



E → E + T

E → E − T

E → T

T → T ∗ F

T → T/F

T → F

F → (E)
F → identifier
F → number



Derivations 29/44

Derivations
Prefix expressions
In prefix expressions the operator appears before the operands.

Example

4 + (a - b) * x (infix expression)
+ 4 * - a b x (prefix expression)

Derivations 30/44

Derivations
Example (prefix expressions grammar (§ 2.4.3))
We can define a context-free grammar (N , T , P, E) for prefix expressions by

N = {E},

T = {identifier, number, +, −, ∗, /},

and the productions in the set P are

E → + E E | − E E | ∗ E E | / E E | identifier | number

Derivations 31/44

Parser Trees
Definition
Let G be a grammar. A parser tree is a tree representing of a sentence of L(G).

Properties
Let G be a grammar. A parser tree of a sentence of L(G) has the following properties [Aho,
Lam, Sethi and Ullman 2006]:
(i) The root is labelled by the start symbol of G.
(ii) Each leaf is labelled by a terminal symbol of G or by ϵ.
(iii) Each interior node is labelled by a non-terminal symbol of G.
(iv) If A is a non-terminal of symbol of G labelling some interior node and X1, X2, . . . , Xn are

the labels of the children of that node from left to right, then there must be a production
A → X1, X2, . . . , Xn in G.

Parser Trees 32/44

Parser Trees
Definition
Let G be a grammar. A parser tree is a tree representing of a sentence of L(G).

Properties
Let G be a grammar. A parser tree of a sentence of L(G) has the following properties [Aho,
Lam, Sethi and Ullman 2006]:
(i) The root is labelled by the start symbol of G.
(ii) Each leaf is labelled by a terminal symbol of G or by ϵ.
(iii) Each interior node is labelled by a non-terminal symbol of G.
(iv) If A is a non-terminal of symbol of G labelling some interior node and X1, X2, . . . , Xn are

the labels of the children of that node from left to right, then there must be a production
A → X1, X2, . . . , Xn in G.

Parser Trees 33/44

Parser Trees
Example
Parser tree for the sentence (5*x)+y of the infix
expressions grammar.

E ⇒ E + T

⇒ T + T

⇒ F + T

⇒ (E) + T

⇒ (T) + T

⇒ (T ∗ F) + T

⇒ (F ∗ F) + T

⇒ (5 ∗ F) + T

⇒ (5 ∗ x) + T

⇒ (5 ∗ x) + F

⇒ (5 ∗ x) + y

E

E

T

F

(E

T

T

F

5

∗ F

x

)

+ T

F

y

Parser Trees 34/44

Abstract Syntax Trees (AST)
Definition
An abstract syntax tree is a parser tree without non-essential information required for evaluating
(generate code in compilation or execute in interpretation) the sentence (p. 38):

i) ‘Non-terminal nodes in the tree are replaced by nodes that reflect the part of the sentence
they represent.’

ii) ‘Unit productions in the tree are collapsed.’

Abstract Syntax Trees (AST) 35/44

Abstract Syntax Trees (AST)
Example
Parser tree and AST (the
interior nodes represent
operators and the leafs
represent operands) for the
sentence (5*x)+y.

E

E

T

F

(E

T

T

F

5

∗ F

x

)

+ T

F

y

Parser tree

+

∗

5 x

y

AST

Abstract Syntax Trees (AST) 36/44

Ambiguity in Grammars
Definition
A grammar G is ambiguous iff there is (at least) a sentence in L(G) that has more than one
parse tree.

Remark
Recall that a sentence of a grammar can have various derivations.

Ambiguity in Grammars 37/44

Ambiguity in Grammars
Definition
A grammar G is ambiguous iff there is (at least) a sentence in L(G) that has more than one
parse tree.

Remark
Recall that a sentence of a grammar can have various derivations.

Ambiguity in Grammars 38/44

Ambiguity in Grammars
Example
Given the grammar (N , T , P, E) where

N = {E},

T = {∗, +, 0, 1, 2, 3, 4, 5, 6, 8, 9},

E → E ∗ E | E + E

E → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

(continued on next slide)

Ambiguity in Grammars 39/44

Ambiguity in Grammars
Example
The sentence 9*5+2 has two parser trees.

E

E

E

9

∗ E

5

+ E

2

E

E

9

∗ E

5 + 2

Ambiguity in Grammars 40/44

Limitations of Syntactic Definitions
Some limitations

The syntax of a programming language is an incomplete description of it (e.g. 5 + 4/0).

‘The set of programs in any interesting language is not context-free.’ (p. 50) (e.g. a + b)

A (context-free) grammar does not specify the semantics of a (programming) language.

Limitations of Syntactic Definitions 41/44

Limitations of Syntactic Definitions
Example (context-sensitive issues (p. 50–51))

In an array declaration in C++, the array size must be a non-negative value.

Operands for the && operation must be boolean in Java.

In a method definition, the return value must be compatible with the return type in the
method declaration.

When a method is called, the actual parameters must match the formal parameter types.

Limitations of Syntactic Definitions 42/44

The ‘Dragon Book’

(First edition, 1986) (Second edition, 2006)

Limitations of Syntactic Definitions 43/44

References
Aho, Alfred V., Lam, Monica S., Sethi, Ravi and Ullman, Jeffrey D. [1986] (2006). Compilers:
Principles, Techniques, & Tools. 2nd ed. Addison-Wesley (cit. on pp. 32, 33).
Lee, Kent D. [2014] (2017). Foundations of Programming Languages. 2nd ed. Undergraduate Topics
in Computer Science. Springer (cit. on p. 2).

References 44/44

	Preliminaries
	Introduction
	Terminology
	Backus-Naur Form (BNF)
	Context-Free Grammar
	Derivations
	Parser Trees
	Abstract Syntax Trees (AST)
	Ambiguity in Grammars
	Limitations of Syntactic Definitions
	References

