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Preliminaries
Conventions

The number and page numbers assigned to chapters, examples, exercises, figures, quotes,
sections and theorems on these slides correspond to the numbers assigned in the textbook [Lee
2017].

The source code examples are in course’s repository.

Preliminaries 2/44



Introduction
Syntax and Semantics

Syntax is how programs look (well-formed programs)

Semantics is how programs work (meaning of programs)

Question
When you are learning/using a programming language are its syntax and its semantics equally
important?
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Terminology
Syntax and semantics issues

Type Static (compile-time) Dynamic (run-time)
Syntax ✓
Semantic ✓ ✓
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Terminology
Example (p. 32)
Is the code

a = b + c;

a correct C++ statement?

Some questions:
1. Do b and c have values? (answered in run-time, dynamic

semantic issue or answered in compile-time, static semantic
issue)

2. Have b and c been declared as a type that allows the +
operation? (answered in compile-time, static semantic
issue)

3. Is a assignment compatible with the result of the expression
b + c? (answered in compile-time, static semantic issue)

4. Does the assignment statement have the proper form?
(answered in compile-time, syntactic issue)
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Terminology
Definition
A terminal symbol (or token) is an elementary symbol of the language.

Example
Keywords, types, operators, numbers, identifiers, among others, are terminal symbols in a
programming language.
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Terminology
Definition
A non-terminal symbol (or syntactic category or syntactic variable) represents a sequence of
terminal symbols.

Example
C++, Java, Python and other

Statements, expressions, if-statements, among others.

Haskell, Standard ML and other

Types, expressions, function applications, function abstractions, among others.
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Backus-Naur Form (BNF)
Definition
Backus Naur-Form (BNF) is a formal (i.e. non-ambiguous) meta-language (i.e. a language for
describing or analysing other language) for describing language syntax.
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Backus-Naur Form (BNF)
BNF Rules
A BNF for a language is a set of rules such as

⟨non-terminal⟩ ::= expression1 | expression2 | . . . | expressionn

where
(i) expressioni is a string of terminals and non-terminals,
(ii) the symbol ::= means that the non-terminal symbol on the left must be replaced with one

expression on the right and
(iii) the symbol | means a choice.
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Backus-Naur Form (BNF)
Example
Let P a set of propositional letters (atomic formulae) and let p ∈ P , we can define the wff’s
(well-formed formulae) of propositional logic by

⟨formula⟩ ::= p

| ¬ ⟨formula⟩
| ( ⟨formula⟩ ∧ ⟨formula⟩ )
| ( ⟨formula⟩ ∨ ⟨formula⟩ )
| ( ⟨formula⟩ → ⟨formula⟩ )
| ( ⟨formula⟩ ↔ ⟨formula⟩ )

Remark
Note the recursive definition of wff’s.
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Backus-Naur Form (BNF)
Example
A BNF describing the integer numbers, with or without sign (e.g. −344, 56, +9784, 8, 0000).

⟨integer⟩ ::= ⟨sign⟩⟨digits⟩ | ⟨digits⟩

⟨digits⟩ ::= ⟨digit⟩⟨digits⟩ | ⟨digit⟩

⟨digit⟩ ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

⟨sign⟩ ::= + | -
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Backus-Naur Form (BNF)
Example
The set of λ-terms of the λ-calculus can be defined by

⟨variable⟩ ::= x | x’ | x” | . . .

⟨λ-term⟩ ::= ⟨variable⟩
| ( λ ⟨variable⟩ . ⟨λ-term⟩ )
| ( ⟨λ-term⟩ ⟨λ-term⟩ )
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Backus-Naur Form (BNF)
Example
A BNF describing a part of Java (pp. 33–34).

⟨primitive-type⟩ ::= boolean | char | byte | short | int | long | float | . . .

⟨argument-list⟩ ::= ⟨expression⟩ | ⟨argument-list⟩ , ⟨expression⟩

⟨selection-statement⟩ ::= if ( ⟨expression⟩ ) ⟨statement⟩
| if ( ⟨expression⟩ ) ⟨statement⟩ else ⟨statement⟩
| switch ( ⟨expression⟩ ) ⟨block⟩

⟨m[ethod]-declaration⟩ ::= ⟨modifiers⟩ ⟨type-specifier⟩ ⟨m-declarator⟩ ⟨throws-clause⟩ ⟨m-body⟩
| ⟨modifiers⟩ ⟨type-specifier⟩ ⟨m-declarator⟩ ⟨m-body⟩
| ⟨type-specifier⟩ ⟨m-declarator⟩ ⟨throws-clause⟩ ⟨m-body⟩
| ⟨type-specifier⟩ ⟨m-declarator⟩ ⟨m-body⟩
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Backus-Naur Form (BNF)
Extended BNF (EBNF)
We shall extended BNF with the following definitions:

i) ‘item?’ or ‘[item]’ means the item is optional.

ii) ‘item*’ or ‘{item}’ means zero or more occurrences of the item are allowable.

iii) ‘item+’ means one or more occurrences of the item are allowable.

iv) Parentheses may be used for grouping.
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Context-Free Grammars
Definition
A context-free grammar is a 4-tuple

G = (N , T , P, S),

where

N is a finite set of non-terminal symbols,
T is a finite set of terminal symbols,
P is a finite set of productions of the form A → α , with A ∈ N and α ∈ {N ∪ T }∗,
S ∈ N is the start symbol,

{N ∪ T }∗ : String of terminals and non-terminals symbols including the empty word ϵ.
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Context-Free Grammars
Example (infix expressions grammar (§ 2.3.1))
We can define a context-free grammar (N , T , P, E) for infix expressions by

N = {E, T, F},

T = {identifier, number, +, −, ∗, /, (, )},

and the productions in the set P are

E → E + T | E − T | T

T → T ∗ F | T/F | F

F → ( E ) | identifier | number

Context-Free Grammar 18/44



Derivations
Definition
A sentence of a grammar G is a string of tokens (terminal symbols) from G.

Example
Two sentences of the infix expressions grammar are (5*x)+y and )4++(.
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Derivations
Definition
A sentential form of a grammar G is a string of terminals and non-terminals symbols from G.

Example
Two sentential forms of the infix expressions grammar are (T ∗ F ) + T and (5 ∗ F ) + T .
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Derivations
Definition
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Derivations
Definition
A derivation of a sentence S in a grammar G is a sequence of sentential forms of G that starts
with the start symbol of G and ends with S.

Remark
Every sentential form in the derivation is obtained from the previous one by replacing A ∈ N
(non-terminal symbol) by α ∈ {N ∪ T }∗ (string of terminals and non-terminals symbols), if
A → α is a production of G.
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Derivations
Definition
A sentence S of a grammar G is valid iff there exists at least one derivation for S in G.
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Derivations
Example
The sentence (5*x)+y of the infix expressions grammar is valid because has the following
derivation:

E ⇒ E + T

⇒ T + T

⇒ F + T

⇒ (E) + T

⇒ (T ) + T

⇒ (T ∗ F ) + T

⇒ (F ∗ F ) + T

⇒ (5 ∗ F ) + T

⇒ (5 ∗ x) + T

⇒ (5 ∗ x) + F

⇒ (5 ∗ x) + y



E → E + T

E → E − T

E → T

T → T ∗ F

T → T/F

T → F

F → ( E )
F → identifier
F → number


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Derivations
Definition
Let G be a grammar. The language of G, denoted L(G), is the set of valid sentences of G.
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Derivations
Types of derivations

Left-most derivation (always replace the left-most non-terminal symbol).

Right-most derivation (always replace the right-most non-terminal symbol).
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Derivations
Example
Left-most and right-most derivations of (5*x)+y.

left-most



E ⇒ E + T

⇒ T + T

⇒ F + T

⇒ (E) + T

⇒ (T ) + T

⇒ (T ∗ F ) + T

⇒ (F ∗ F ) + T

⇒ (5 ∗ F ) + T

⇒ (5 ∗ x) + T

⇒ (5 ∗ x) + F

⇒ (5 ∗ x) + y

right-most



E ⇒ E + T

⇒ E + F

⇒ E + y

⇒ T + y

⇒ F + y

⇒ (E) + y

⇒ (T ) + y

⇒ (T ∗ F ) + y

⇒ (T ∗ x) + y

⇒ (F ∗ x) + y

⇒ (5 ∗ x) + y



E → E + T

E → E − T

E → T

T → T ∗ F

T → T/F

T → F

F → ( E )
F → identifier
F → number


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Derivations
Prefix expressions
In prefix expressions the operator appears before the operands.

Example

4 + (a - b) * x (infix expression)
+ 4 * - a b x (prefix expression)
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Derivations
Example (prefix expressions grammar (§ 2.4.3))
We can define a context-free grammar (N , T , P, E) for prefix expressions by

N = {E},

T = {identifier, number, +, −, ∗, /},

and the productions in the set P are

E → + E E | − E E | ∗ E E | / E E | identifier | number
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Parser Trees
Definition
Let G be a grammar. A parser tree is a tree representing of a sentence of L(G).

Properties
Let G be a grammar. A parser tree of a sentence of L(G) has the following properties [Aho,
Lam, Sethi and Ullman 2006]:
(i) The root is labelled by the start symbol of G.
(ii) Each leaf is labelled by a terminal symbol of G or by ϵ.
(iii) Each interior node is labelled by a non-terminal symbol of G.
(iv) If A is a non-terminal of symbol of G labelling some interior node and X1, X2, . . . , Xn are

the labels of the children of that node from left to right, then there must be a production
A → X1, X2, . . . , Xn in G.
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Parser Trees
Example
Parser tree for the sentence (5*x)+y of the infix
expressions grammar.

E ⇒ E + T

⇒ T + T

⇒ F + T

⇒ (E) + T

⇒ (T ) + T

⇒ (T ∗ F ) + T

⇒ (F ∗ F ) + T

⇒ (5 ∗ F ) + T

⇒ (5 ∗ x) + T

⇒ (5 ∗ x) + F

⇒ (5 ∗ x) + y

E

E

T

F

( E

T

T

F

5

∗ F

x

)

+ T

F

y
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Abstract Syntax Trees (AST)
Definition
An abstract syntax tree is a parser tree without non-essential information required for evaluating
(generate code in compilation or execute in interpretation) the sentence (p. 38):

i) ‘Non-terminal nodes in the tree are replaced by nodes that reflect the part of the sentence
they represent.’

ii) ‘Unit productions in the tree are collapsed.’
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Abstract Syntax Trees (AST)
Example
Parser tree and AST (the
interior nodes represent
operators and the leafs
represent operands) for the
sentence (5*x)+y.

E

E

T

F

( E

T

T

F

5

∗ F

x

)

+ T

F

y

Parser tree

+

∗

5 x

y

AST
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Ambiguity in Grammars
Definition
A grammar G is ambiguous iff there is (at least) a sentence in L(G) that has more than one
parse tree.

Remark
Recall that a sentence of a grammar can have various derivations.
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Ambiguity in Grammars
Example
Given the grammar (N , T , P, E) where

N = {E},

T = {∗, +, 0, 1, 2, 3, 4, 5, 6, 8, 9},

E → E ∗ E | E + E

E → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

(continued on next slide)
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Ambiguity in Grammars
Example
The sentence 9*5+2 has two parser trees.

E

E

E

9

∗ E

5

+ E

2

E

E

9

∗ E

5 + 2
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Limitations of Syntactic Definitions
Some limitations

The syntax of a programming language is an incomplete description of it (e.g. 5 + 4/0).

‘The set of programs in any interesting language is not context-free.’ (p. 50) (e.g. a + b)

A (context-free) grammar does not specify the semantics of a (programming) language.
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Limitations of Syntactic Definitions
Example (context-sensitive issues (p. 50–51))

In an array declaration in C++, the array size must be a non-negative value.

Operands for the && operation must be boolean in Java.

In a method definition, the return value must be compatible with the return type in the
method declaration.

When a method is called, the actual parameters must match the formal parameter types.
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The ‘Dragon Book’

(First edition, 1986) (Second edition, 2006)
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