ST0244 Programming Languages 2. Syntax

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2023-2

Preliminaries

Conventions

- The number and page numbers assigned to chapters, examples, exercises, figures, quotes, sections and theorems on these slides correspond to the numbers assigned in the textbook [Lee 2017].
- The source code examples are in course's repository.

Introduction

$\mathsf{Syntax} \text{ and } \mathsf{Semantics}$

- Syntax is how programs look (well-formed programs)
- Semantics is how programs work (meaning of programs)

Introduction

$\mathsf{Syntax} \text{ and } \mathsf{Semantics}$

- Syntax is how programs look (well-formed programs)
- Semantics is how programs work (meaning of programs)

Question

When you are learning/using a programming language are its syntax and its semantics equally important?

Syntax and semantics issues

Туре	Static (compile-time)	Dynamic (run-time)
Syntax	\checkmark	
Semantic	\checkmark	\checkmark

Example (p. 32)

Is the code

a = b + c;

a correct C++ statement?

Example (p. 32)

Is the code

a = b + c;

a correct C++ statement?

Some questions:

- 1. Do b and c have values? (answered in run-time, dynamic semantic issue or answered in compile-time, static semantic issue)
- 2. Have b and c been declared as a type that allows the + operation? (answered in compile-time, static semantic issue)
- Is a assignment compatible with the result of the expression
 b + c? (answered in compile-time, static semantic issue)
- 4. Does the assignment statement have the proper form? (answered in compile-time, syntactic issue)

Definition

A terminal symbol (or token) is an elementary symbol of the language.

Example

Keywords, types, operators, numbers, identifiers, among others, are terminal symbols in a programming language.

Definition

A **non-terminal** symbol (or **syntactic category** or **syntactic variable**) represents a sequence of terminal symbols.

Example

• C++, Java, Python and other

Statements, expressions, if-statements, among others.

• Haskell, Standard ML and other

Types, expressions, function applications, function abstractions, among others.

Definition

Backus Naur-Form (BNF) is a formal (i.e. non-ambiguous) meta-language (i.e. a language for describing or analysing other language) for describing language syntax.

BNF Rules

A BNF for a language is a set of rules such as

where

- (i) $expression_i$ is a string of terminals and non-terminals,
- (ii) the symbol ::= means that the non-terminal symbol on the left must be replaced with one expression on the right and
- (iii) the symbol | means a choice.

Example

Let P a set of propositional letters (atomic formulae) and let $p \in P$, we can define the wff's (well-formed formulae) of propositional logic by

Remark

Note the recursive definition of wff's.

Backus-Naur Form (BNF)

Example

A BNF describing the integer numbers, with or without sign (e.g. -344, 56, +9784, 8, 0000).

Example

The set of λ -terms of the λ -calculus can be defined by

Example

A BNF describing a part of Java (pp. 33–34).

(primitive-type) ::= boolean | char | byte | short | int | long | float | ... $\langle \text{argument-list} \rangle ::= \langle \text{expression} \rangle \mid \langle \text{argument-list} \rangle$, $\langle \text{expression} \rangle$ $\langle \text{selection-statement} \rangle ::= \text{ if } (\langle \text{expression} \rangle) \langle \text{statement} \rangle$ if ($\langle expression \rangle$) $\langle statement \rangle$ else $\langle statement \rangle$ switch ($\langle expression \rangle$) $\langle block \rangle$ $\langle m[ethod]-declaration \rangle ::= \langle modifiers \rangle \langle type-specifier \rangle \langle m-declarator \rangle \langle throws-clause \rangle \langle m-body \rangle$ (modifiers) (type-specifier) (m-declarator) (m-body) $\langle type-specifier \rangle \langle m-declarator \rangle \langle throws-clause \rangle \langle m-body \rangle$ $\langle \text{type-specifier} \rangle \langle \text{m-declarator} \rangle \langle \text{m-body} \rangle$

Extended BNF (EBNF)

We shall extended BNF with the following definitions:

- i) 'item?' or '[item]' means the item is optional.
- ii) 'item*' or '{item}' means zero or more occurrences of the item are allowable.
- iii) 'item+' means one or more occurrences of the item are allowable.
- iv) Parentheses may be used for grouping.

Context-Free Grammars

Definition

A context-free grammar is a 4-tuple

 $G = (\mathcal{N}, \mathcal{T}, \mathcal{P}, \mathcal{S}),$

where

 ${\cal N}$ is a finite set of non-terminal symbols,

 \mathcal{T} is a finite set of terminal symbols,

 \mathcal{P} is a finite set of productions of the form $A \to \alpha$, with $A \in \mathcal{N}$ and $\alpha \in \{\mathcal{N} \cup \mathcal{T}\}^*$, $\mathcal{S} \in \mathcal{N}$ is the start symbol,

 $\{\mathcal{N} \cup \mathcal{T}\}^*$: String of terminals and non-terminals symbols including the empty word ϵ .

Context-Free Grammars

Example (infix expressions grammar (§ 2.3.1))

We can define a context-free grammar $(\mathcal{N}, \mathcal{T}, \mathcal{P}, E)$ for infix expressions by

```
\mathcal{N} = \{E, T, F\},
\mathcal{T} = \{\text{identifier, number}, +, -, *, /, (,)\},
```

and the productions in the set \mathcal{P} are

 $E \to E + T \mid E - T \mid T$ $T \to T * F \mid T/F \mid F$ $F \to (E) \mid \text{identifier} \mid \text{number}$

Definition

A sentence of a grammar G is a string of tokens (terminal symbols) from G.

Definition

A sentence of a grammar G is a string of tokens (terminal symbols) from G.

Example

Two sentences of the infix expressions grammar are (5*x)+y and)4++(.

Definition

A sentential form of a grammar G is a string of terminals and non-terminals symbols from G.

Definition

A sentential form of a grammar G is a string of terminals and non-terminals symbols from G.

Example

Two sentential forms of the infix expressions grammar are (T * F) + T and (5 * F) + T.

Definition

A derivation of a sentence S in a grammar G is a sequence of sentential forms of G that starts with the start symbol of G and ends with S.

Definition

A derivation of a sentence S in a grammar G is a sequence of sentential forms of G that starts with the start symbol of G and ends with S.

Remark

Every sentential form in the derivation is obtained from the previous one by replacing $A \in \mathcal{N}$ (non-terminal symbol) by $\alpha \in \{\mathcal{N} \cup \mathcal{T}\}^*$ (string of terminals and non-terminals symbols), if $A \to \alpha$ is a production of G.

Definition

A sentence S of a grammar G is valid iff there exists at least one derivation for S in G.

Example

The sentence (5*x)+y of the infix expressions grammar is valid because has the following derivation:

$\underline{E} \Rightarrow \underline{E} + T$	
$\Rightarrow \underline{T} + T$	$(E \rightarrow E + T)$
$\Rightarrow \underline{F} + T$	$E \rightarrow E - T$
$\Rightarrow (\underline{E}) + T$	$E \to T$
$\Rightarrow (\underline{T}) + T$	$T \to T * F$
$\Rightarrow (\underline{T} * F) + T$	$T \to T/F$
$\Rightarrow (\underline{F} * F) + T$	$T \to F$
$\Rightarrow (5 * \underline{F}) + T$	$F \rightarrow (E)$
$\Rightarrow (5 * x) + \underline{T}$	$F \rightarrow \text{identifier}$
$\Rightarrow (5 * x) + \underline{F}$	$\langle F \rightarrow \text{number} \rangle$
$\Rightarrow (5 * x) + y$	

Definition

Let G be a grammar. The **language** of G, denoted L(G), is the set of valid sentences of G.

Types of derivations

- Left-most derivation (always replace the left-most non-terminal symbol).
- Right-most derivation (always replace the right-most non-terminal symbol).

Example

Left-most and right-most derivations of (5*x)+y.

	$\underline{E} \Rightarrow \underline{E} + T$	1	$\underline{E} \Rightarrow E + \underline{T}$
	$\Rightarrow \underline{T} + T$		$\Rightarrow E + \underline{F}$
	$\Rightarrow \underline{F} + T$		$\Rightarrow \underline{E} + y$
	$\Rightarrow (\underline{E}) + T$		$\Rightarrow \underline{T} + y$
	$\Rightarrow (\underline{T}) + T$		$\Rightarrow \underline{F} + y$
left-most 🔇	$\Rightarrow (\underline{T} * F) + T$	right-most <	$\Rightarrow (\underline{E}) + y$
	$\Rightarrow (\underline{F} * F) + T$		$\Rightarrow (\underline{T}) + y$
	$\Rightarrow (5 * \underline{F}) + T$		$\Rightarrow (T * \underline{F}) + y$
	$\Rightarrow (5 * x) + \underline{T}$		$\Rightarrow (\underline{T} * x) + y$
	$\Rightarrow (5 * x) + \underline{F}$		$\Rightarrow (\underline{F} \ast x) + y$
	$\Rightarrow (5*x) + y$		$\Rightarrow (5 * x) + y$

$$\begin{pmatrix} E \to E + T \\ E \to E - T \\ T \to T \\ T \to T * F \\ T \to T/F \\ T \to F \\ F \to (E) \\ F \to \text{identifier} \\ F \to \text{number} \end{pmatrix}$$

Prefix expressions

In prefix expressions the operator appears before the operands.

Example

4 + (a - b) * x (infix expression) + 4 * - a b x (prefix expression)

Example (prefix expressions grammar (§ 2.4.3))

We can define a context-free grammar $(\mathcal{N}, \mathcal{T}, \mathcal{P}, E)$ for prefix expressions by

$$\mathcal{N} = \{E\},\$$

$$\mathcal{T} = \{\text{identifier, number}, +, -, *, /\},\$$

and the productions in the set \mathcal{P} are

 $E \rightarrow + \ E \ E \ | \ - \ E \ E \ | \ * \ E \ E \ | \ / \ E \ E \ |$ identifier | number

Parser Trees

Definition

Let G be a grammar. A **parser tree** is a tree representing of a sentence of L(G).

Parser Trees

Definition

Let G be a grammar. A **parser tree** is a tree representing of a sentence of L(G).

Properties

Let G be a grammar. A parser tree of a sentence of L(G) has the following properties [Aho, Lam, Sethi and Ullman 2006]:

- (i) The root is labelled by the start symbol of G.
- (ii) Each leaf is labelled by a terminal symbol of G or by ϵ .

(iii) Each interior node is labelled by a non-terminal symbol of G.

(iv) If A is a non-terminal of symbol of G labelling some interior node and X_1, X_2, \ldots, X_n are the labels of the children of that node from left to right, then there must be a production $A \to X_1, X_2, \ldots, X_n$ in G.

Parser Trees

Example

Parser tree for the sentence (5*x)+y of the infix expressions grammar.

$$\begin{split} \underline{E} \Rightarrow \underline{E} + T \\ \Rightarrow \underline{T} + T \\ \Rightarrow \underline{F} + T \\ \Rightarrow (\underline{E}) + T \\ \Rightarrow (\underline{T}) + T \\ \Rightarrow (\underline{T} * F) + T \\ \Rightarrow (\underline{F} * F) + T \\ \Rightarrow (5 * \underline{F}) + T \\ \Rightarrow (5 * x) + \underline{T} \\ \Rightarrow (5 * x) + \underline{F} \\ \Rightarrow (5 * x) + y \end{split}$$

Definition

An **abstract syntax tree** is a parser tree without non-essential information required for evaluating (generate code in compilation or execute in interpretation) the sentence (p. 38):

- i) 'Non-terminal nodes in the tree are replaced by nodes that reflect the part of the sentence they represent.'
- ii) 'Unit productions in the tree are collapsed.'

Abstract Syntax Trees (AST)

Example

Parser tree and AST (the interior nodes represent operators and the leafs represent operands) for the sentence (5*x)+y.

Parser tree

Definition

A grammar G is **ambiguous** iff there is (at least) a sentence in L(G) that has more than one parse tree.

Definition

A grammar G is **ambiguous** iff there is (at least) a sentence in L(G) that has more than one parse tree.

Remark

Recall that a sentence of a grammar can have various derivations.

Example

Given the grammar $(\mathcal{N}, \mathcal{T}, \mathcal{P}, E)$ where

$$\mathcal{N} = \{E\},$$

$$\mathcal{T} = \{*, +, 0, 1, 2, 3, 4, 5, 6, 8, 9\},$$

$$E \to E * E \mid E + E$$

$$E \to 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$$

(continued on next slide)

Example

The sentence 9*5+2 has two parser trees.

Some limitations

- The syntax of a programming language is an incomplete description of it (e.g. 5 + 4/0).
- 'The set of programs in any interesting language is not context-free.' (p. 50) (e.g. a + b)
- A (context-free) grammar does not specify the semantics of a (programming) language.

Limitations of Syntactic Definitions

Example (context-sensitive issues (p. 50–51))

- In an array declaration in C++, the array size must be a non-negative value.
- Operands for the && operation must be boolean in Java.
- In a method definition, the return value must be compatible with the return type in the method declaration.
- When a method is called, the actual parameters must match the formal parameter types.

The 'Dragon Book'

(First edition, 1986)

(Second edition, 2006)

References

- Aho, Alfred V., Lam, Monica S., Sethi, Ravi and Ullman, Jeffrey D. [1986] (2006). Compilers: Principles, Techniques, & Tools. 2nd ed. Addison-Wesley (cit. on pp. 32, 33).
- Lee, Kent D. [2014] (2017). Foundations of Programming Languages. 2nd ed. Undergraduate Topics in Computer Science. Springer (cit. on p. 2).