
ST0244 Programming Languages
4. Object-Oriented Programming

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2023-2

Preliminaries
Conventions

The number and page numbers assigned to chapters, examples, exercises, figures, quotes,
sections and theorems on these slides correspond to the numbers assigned in the textbook [Lee
2017].
The source code examples are in course’s repository.

Preliminaries 2/75

Introduction

Concept Count %
Inheritance 71 81%
Object 69 78%
Class 62 71%
Encapsulation 55 63%
Method 50 57%
Message Passing 49 56%
Polymorphism 47 53%
Abstraction 45 51%

‘The quarks of object-oriented development’ [Armstrong 2006].

Introduction 3/75

Introduction
Quark’s definitions [Armstrong 2006]
(i) ‘Inheritance: A mechanism that allows the data and behavior of one class to be included

in or used as the basis for another class.’
(ii) ‘Object: Individual, identifiable item, either real or abstract, which contains data about

itself and descriptions of its manipulations of the data.’
(iii) ‘Class: A description of the organization and similar objects.’
(iv) ‘Encapsulation: A technique for designing classes and objects that restricts access to the

data and behavior by defining a limited set of messages that an object of that class can
receive.’

(continued on next slide)

Introduction 4/75

Introduction
Quark’s definitions (continuation)
(v) ‘Method: A way to access, set or manipulate object’s information.’
(vi) ‘Message passing: The process by which an object sends data to another object or asks

the other object to invoke a method.’
(vii) ‘Polymorphism is defined as: the ability of different classes to respond to the same message

and each implement the method appropriately.’
(viii) ‘Abstraction: The act of creating classes to simplify aspects of reality using distinctions

inherent to the problem.’

Introduction 5/75

Introduction
Programming languages
OOP languages include C++, Java, Python, Ruby, Scala and Smalltalk.

Introduction 6/75

The Java Environment

Tools
Java compiler (command javac on Linux):
Source code to bytecode.
Java Virtual Machine (JVM) (command
java on Linux): Executes the bytecode.

(Fig. 4.4)

The Java Environment 7/75

The Java Environment
About the ‘hello, world’ example

‘The first program to write is the same for all
languages: Print the words hello, world.’ [1978,
§1.1]

The Java Environment 8/75

The Java Environment
Example
Compile and run the hw/HelloWorld.java program by running the followings commands:

$ javac HelloWorld.java
$ java HelloWorld

The Java Environment 9/75

The Java Environment
Example
Compiling the oop/Warning.java program using the -Xlint option:

$ javac -Xlint Warning.java
Warning.java:4: warning: [cast] redundant cast to String

String s = (String)"hello, word!";
^

1 warning

The Java Environment 10/75

The Java Environment
Example
Compiling the oop/Warning.java program using the -Xlint and -Werror options:

$ javac -Xlint -Werror Warning.java
Warning.java:4: warning: [cast] redundant cast to String

String s = (String)"hello, word";
^

error: warnings found and -Werror specified
1 error
1 warning

The Java Environment 11/75

The Java Environment
Example
More examples using -Xlint keys:
https://docs.oracle.com/en/java/javase/20/docs/specs/man/javac.html#
examples-of-using--xlint-keys .

Remark
For getting information about the extra options and -Xlint keys use the following commands,
respectively:

$ javac --help -X
$ javac --help-lint

The Java Environment 12/75

https://docs.oracle.com/en/java/javase/20/docs/specs/man/javac.html#examples-of-using--xlint-keys
https://docs.oracle.com/en/java/javase/20/docs/specs/man/javac.html#examples-of-using--xlint-keys

The Java Environment
Example
More examples using -Xlint keys:
https://docs.oracle.com/en/java/javase/20/docs/specs/man/javac.html#
examples-of-using--xlint-keys .

Remark
For getting information about the extra options and -Xlint keys use the following commands,
respectively:

$ javac --help -X
$ javac --help-lint

The Java Environment 13/75

https://docs.oracle.com/en/java/javase/20/docs/specs/man/javac.html#examples-of-using--xlint-keys
https://docs.oracle.com/en/java/javase/20/docs/specs/man/javac.html#examples-of-using--xlint-keys

The C++ Environment
The C++ environment
Fig. 4.5:
https://kentdlee.github.io/PL/build/html/oop.html#the-c-environment

The C++ Environment 14/75

https://kentdlee.github.io/PL/build/html/oop.html#the-c-environment

The C++ Environment
Example
Compile and run the hw/hello-world.cc program by running the followings commands:

$ g++ -o hello-world hello-world.cc
$./hello-world

The C++ Environment 15/75

The C++ Environment
Example
Compiling the oop/warning.cc program using the -Wall option:

$ g++ -Wall -o warning warning.cc
warnings.cc: In function ‘int main(int, char**)’:
warnings.cc:10:11: warning: ‘i’ is used uninitialized
in this function [-Wuninitialized]
cout << i << endl;

^

The C++ Environment 16/75

The C++ Environment
Example
Compiling the oop/warning.cc program using the -Wall and -Werror options:

$ g++ -Wall -Werror -o warning warning.cc
warnings.cc: In function ‘int main(int, char**)’:
warnings.cc:10:11: warning: ‘i’ is used uninitialized
in this function [-Wuninitialized]
cout << i << endl;

^
cc1plus: all warnings being treated as errors

The C++ Environment 17/75

The C++ Macro Processor
Description
The C++ macro processor is a program that processes directives, which give instructions
(e.g. for including files, for conditional compilation, for macro definition and expansion, among
other) to the compiler to preprocess the source code before the compilation starts.

Example
From the line
#include <iostream>

in hw/hello-world.cc, the macro processor includes the iostream library.

The C++ Environment 18/75

The C++ Macro Processor
Description
The C++ macro processor is a program that processes directives, which give instructions
(e.g. for including files, for conditional compilation, for macro definition and expansion, among
other) to the compiler to preprocess the source code before the compilation starts.

Example
From the line
#include <iostream>

in hw/hello-world.cc, the macro processor includes the iostream library.

The C++ Environment 19/75

The C++ Macro Processor
Remark
The C++ macro processor is called cpp.

Example
Using cpp (or equivalently g++ -E):

$ cpp hello-world.cc > xxx.cc

See the xxx.cc file in your favourite editor.
How many lines has the xxx.cc file?

$ wc -l xxx.cc
28647 xxx.cc

The C++ Environment 20/75

The make Tool
Description

‘The make tool is a program that can be used to compile programs that are composed
of modules and utilise separate compilation.’ (p. 120)

Rules
A makefile consists of a set of ‘rules’ with the following shape:

target ... : prerequisites ...
recipe
...

The C++ Environment 21/75

The make Tool
Description

‘The make tool is a program that can be used to compile programs that are composed
of modules and utilise separate compilation.’ (p. 120)

Rules
A makefile consists of a set of ‘rules’ with the following shape:

target ... : prerequisites ...
recipe
...

The C++ Environment 22/75

The make Tool
Example (make rule)

foo : foo.cc
g++ -o foo foo.cc

The C++ Environment 23/75

The make Tool
Make default rule for C++
The default rule for C++ is something like:
file : file.cc

$(CXX) $(CPPFLAGS) $(CXXFLAGS) -o $@ $<

The C++ Environment 24/75

The make Tool
Example
See oop/Makefile file.

The C++ Environment 25/75

Classes and Objects
Description

‘Object-Oriented programming is all about creating objects. Objects have state
information, sometimes just called state, and methods that operate on that state,
sometimes altering the state. If we alter the state of an object we call it a mutable
object. If we cannot alter the object’s state once it is created, the object is called
immutable. A class defines the state information maintained by an object and the
methods that operate on that state.’ (p. 127)

Classes and Objects 26/75

Classes and Objects
Exercise
The GNU Smalltalk tutorial∗ shows the implementation of toy home-finance accounting system
with three classes: Account, Savings and Cheking.

Implement the system in C++ and Java.

∗In https://www.gnu.org/software/smalltalk/manual/html_node/Tutorial.html.
Classes and Objects 27/75

https://www.gnu.org/software/smalltalk/manual/html_node/Tutorial.html

Classes and Objects
Example (class for vectors in C++)
From file oop/vector.cc:

Private and public members

Constructor
Graphical representation of Vector v(6):∗

6

Vector:

elem:

sz:

0: 1: 2: 3: 4: 5:

(continued on next slide)

∗Figure from [Stroustrup 2019, p. 24].
Classes and Objects 28/75

Classes and Objects
Example (class for vectors in C++)
From file oop/vector.cc:

Private and public members
Constructor
Graphical representation of Vector v(6):∗

6

Vector:

elem:

sz:

0: 1: 2: 3: 4: 5:

(continued on next slide)
∗Figure from [Stroustrup 2019, p. 24].

Classes and Objects 29/75

Classes and Objects
Example (continuation)

Initialisation
Graphical representation of Vector v(6):∗

6

Vector:

elem:

sz: 0 0 0 0 0 0

0: 1: 2: 3: 4: 5:

Destructor
Use of const.

∗Figure from [Stroustrup 2019, p. 52].
Classes and Objects 30/75

Classes and Objects
Example (continuation)

Initialisation
Graphical representation of Vector v(6):∗

6

Vector:

elem:

sz: 0 0 0 0 0 0

0: 1: 2: 3: 4: 5:

Destructor

Use of const.

∗Figure from [Stroustrup 2019, p. 52].
Classes and Objects 31/75

Classes and Objects
Example (continuation)

Initialisation
Graphical representation of Vector v(6):∗

6

Vector:

elem:

sz: 0 0 0 0 0 0

0: 1: 2: 3: 4: 5:

Destructor
Use of const.

∗Figure from [Stroustrup 2019, p. 52].
Classes and Objects 32/75

Inheritance and Polymorphism
Definition

‘Inheritance is a relationship among classes wherein one class shares the structure an-
d/or behavior defined in one (single inheritance) or more (multiple inheritance) other
classes. We call the class from which another class inherits its superclass. . . Similarly,
we call a class that inherits from one or more classes a subclass.’ (Booch, Maksimchuk,
Engle, Young, Conallen and Houston 2007, p. 100)

‘Inheritance is: a mechanism that allows the data and behavior of one class to be
included in or used as the basis for another class.’ (Armstrong 2006, p. 124)

‘Inheritance is the mechanism we employ to re-use code in software we are currently
writing.’ (p. 131)

Inheritance and Polymorphism 33/75

Inheritance and Polymorphism
Definition

‘Inheritance is a relationship among classes wherein one class shares the structure an-
d/or behavior defined in one (single inheritance) or more (multiple inheritance) other
classes. We call the class from which another class inherits its superclass. . . Similarly,
we call a class that inherits from one or more classes a subclass.’ (Booch, Maksimchuk,
Engle, Young, Conallen and Houston 2007, p. 100)

‘Inheritance is: a mechanism that allows the data and behavior of one class to be
included in or used as the basis for another class.’ (Armstrong 2006, p. 124)

‘Inheritance is the mechanism we employ to re-use code in software we are currently
writing.’ (p. 131)

Inheritance and Polymorphism 34/75

Inheritance and Polymorphism
Definition

‘Inheritance is a relationship among classes wherein one class shares the structure an-
d/or behavior defined in one (single inheritance) or more (multiple inheritance) other
classes. We call the class from which another class inherits its superclass. . . Similarly,
we call a class that inherits from one or more classes a subclass.’ (Booch, Maksimchuk,
Engle, Young, Conallen and Houston 2007, p. 100)

‘Inheritance is: a mechanism that allows the data and behavior of one class to be
included in or used as the basis for another class.’ (Armstrong 2006, p. 124)

‘Inheritance is the mechanism we employ to re-use code in software we are currently
writing.’ (p. 131)

Inheritance and Polymorphism 35/75

Inheritance and Polymorphism
Definition

‘Polymorphism is a concept in type theory wherein a name may denote instances of
many different classes as long as they are related by some common superclass. . . With
polymorphism, an operation can be implemented differently by the classes in the
hierarchy. In this manner, a subclass can extend the capabilities of its superclass or
override the parent’s operation.’ (Booch, Maksimchuk, Engle, Young, Conallen and
Houston 2007, p. 102)

‘Polymorphism is defined as: the ability of different classes to respond to the same
message and each implement the method appropriately.’ (Armstrong 2006, p. 126)

‘Polymorphism is the mechanism we employ to customize the behavior of code we
have already written.’ (p. 131)

Inheritance and Polymorphism 36/75

Inheritance and Polymorphism
Definition

‘Polymorphism is a concept in type theory wherein a name may denote instances of
many different classes as long as they are related by some common superclass. . . With
polymorphism, an operation can be implemented differently by the classes in the
hierarchy. In this manner, a subclass can extend the capabilities of its superclass or
override the parent’s operation.’ (Booch, Maksimchuk, Engle, Young, Conallen and
Houston 2007, p. 102)

‘Polymorphism is defined as: the ability of different classes to respond to the same
message and each implement the method appropriately.’ (Armstrong 2006, p. 126)

‘Polymorphism is the mechanism we employ to customize the behavior of code we
have already written.’ (p. 131)

Inheritance and Polymorphism 37/75

Inheritance and Polymorphism
Definition

‘Polymorphism is a concept in type theory wherein a name may denote instances of
many different classes as long as they are related by some common superclass. . . With
polymorphism, an operation can be implemented differently by the classes in the
hierarchy. In this manner, a subclass can extend the capabilities of its superclass or
override the parent’s operation.’ (Booch, Maksimchuk, Engle, Young, Conallen and
Houston 2007, p. 102)

‘Polymorphism is defined as: the ability of different classes to respond to the same
message and each implement the method appropriately.’ (Armstrong 2006, p. 126)

‘Polymorphism is the mechanism we employ to customize the behavior of code we
have already written.’ (p. 131)

Inheritance and Polymorphism 38/75

Inheritance and Polymorphism
Remark
The previous polymorphism is called run-time polymorphism or subtype polymorphism.

Example (C++)
See the oop/polymorphim.cc file.

Inheritance and Polymorphism 39/75

Inheritance and Polymorphism
Remark
The previous polymorphism is called run-time polymorphism or subtype polymorphism.

Example (C++)
See the oop/polymorphim.cc file.

Inheritance and Polymorphism 40/75

Namespaces
Description
In programming languages namespaces are context for identifiers. They help to uniquely identify
the names of variables, functions, classes, etc.

Namespaces 41/75

Namespaces
Example (C++)
The line
using namespace std;

in hw/hello-world.cc opens the std (standard) namespace. If we remove this line, we should
replace the line
cout << "Hello␣World!" << endl;

by the line
std::cout << "Hello␣World!" << std::endl;

where ‘::’ is a scope qualifier.

Namespaces 42/75

Namespaces
Example (Java)
Namespaces in Java are handle by packages (named collection of classes).

From the line
import java.io.File;

we can write File instead of java.io.File.
From line

import java.io.*;

we don’t need qualified names when using the classes in java.io.

Namespaces 43/75

Namespaces
Remark

‘The safest way to program is to not open up namespaces or merge them together.
But, that is also inconvenient since the whole name must be written each time. What
is correct for your program depends on the program being written.’ (p. 122)

Namespaces 44/75

Linking
Linking libraries
Libraries are common in programming languages. For using the libraries them must be linked
into your program.

Linking 45/75

Linking
Static linking versus dynamic linking∗

∗Figure from
https://achindrabhatnagar.wordpress.com/2018/09/08/static-and-dynamic-linking-c-code/.

Linking 46/75

https://achindrabhatnagar.wordpress.com/2018/09/08/static-and-dynamic-linking-c-code/

Linking∗

∗Figure from https://pediaa.com/what-is-the-difference-between-static-and-dynamic-linking/.

https://pediaa.com/what-is-the-difference-between-static-and-dynamic-linking/

Linking
Example
C++ uses dynamic linking by default but allows static linking.
Java only uses dynamic linking.

Linking 48/75

Linking
Example
Statically linking the hw/hello-word.cc:

$ g++ -c hello-world.cc
$ g++ --static -o hw-static hello-world.o

Dynamically linking the oop/hello-word.cc:

$ g++ -o hw-dynamic hello-world.cc

Comparing sizes:

$ ls -l hw-* | awk ’{print $5, $9}’
17K hw-dynamic
2,4M hw-static

Linking 49/75

The Main Function
Example
See the files oop/cli.cc and oop/CLI.java.

The Main Function 50/75

I/O Streams
Reading
To read Section 4.6 “I/O Streams”.

I/O Streams 51/75

Garbage Collection
Features

The GC removes automatically objects (variables, data structures, functions, or methods)
from the heap (i.e. dynamically created) when are no longer needed.
Trade-off between programmer control and automatically memory management.
The GC avoids memory leaks.
The GC impacts the run-time performance of a system.
Languages with GC require a run-time system (i.e. virtual machine) for executing the
programs.
The GC runs in a thread.

Garbage Collection (GC) 52/75

Garbage Collection
Example
Java, Haskell and Python have garbage collection. C and C++ haven’t.

Garbage Collection (GC) 53/75

Threading
Description

‘A thread is a basic unit of CPU
utilization; it comprises a thread
ID, a program counter (PC), a re-
gister set, and a stack. It shares
with other threads belonging to
the same process its code section,
data section, and other operating-
system resources, such as open
files and signals.’ [Silberschatz,
Galvin and Gagne 2018, p. 160
and Fig. 4.1]

160 Chapter 4 Threads & Concurrency

single-threaded multithreaded

thread

multithreaded process single-threaded process

registers

kk

stack

k

filesdatacodefilesdatacode

thread

PC registers registers

stackstacstac

registers

PC PC PC

Threading 54/75

Threading
Example
A text processor with three threads.∗

Kernel

Keyboard Disk

Four score and seven

years ago, our fathers

brought forth upon this

continent a new nation:

conceived in liberty,

and dedicated to the

proposition that all

men are created equal.

 Now we are engaged

in a great civil war

testing whether that

nation, or any nation

so conceived and so

dedicated, can long

endure. We are met on

a great battlefield of

that war.

 We have come to

dedicate a portion of

that field as a final

resting place for those

who here gave their

lives that this nation

might live. It is

altogether fitting and

proper that we should

do this.

 But, in a larger sense,

we cannot dedicate, we

cannot consecrate we

cannot hallow this

ground. The brave

men, living and dead,

who struggled here

have consecrated it, far

above our poor power

to add or detract. The

world will little note,

nor long remember,

what we say here, but

it can never forget

what they did here.

 It is for us the living,

rather, to be dedicated

here to the unfinished

work which they who

fought here have thus

far so nobly advanced.

It is rather for us to be

here dedicated to the

great task remaining

before us, that from

these honored dead we

take increased devotion

to that cause for which

they gave the last full

measure of devotion,

that we here highly

resolve that these dead

shall not have died in

vain that this nation,

under God, shall have

a new birth of freedom

and that government of

the people by the

people, for the people

∗Figure from [Tanenbaum and Bos 2014, Fig. 2.7].
Threading 55/75

Pointers and References
Description

‘Pointers are the address of data in the memory of the computer. Pointers can be used in
expressions to create new pointers using pointer arithmetic. In a programming language
a pointer can point anywhere. A reference is much more controlled. References are
somewhat like pointers except that they cannot be used in arithmetic expressions. They
also don’t directly point to locations in memory. When a reference is dereferenced
using a dot, the run-time system does the lookup in a reference table.
This difference between references and pointers means that we can safely rely on every
reference pointing to a real object where we don’t necessarily know if a pointer is
pointing to space that might be safely freed or not since the pointer might be the
result of some pointer arithmetic. References are safe for garbage collection. Pointers
are not.’ (p. 130)

Pointers and References 56/75

Pointers and References
Pointers and references in C++
See the oop/pointers-and-references.cc file.

Pointers and References 57/75

Pointers and References
Exercise
¿What does print the following program? Why?

void f(int a, int& b)
{
a = a + b;
b = a - b;
a = a - b;

}

void g(int* a, int b)
{
*a = *a + b;
b = *a - b;
*a = *a - b;

}

int main()
{
int x = 1, y = 2;

f(x,y);
cout << "x:␣" << x;
cout << "␣y:␣" << y << endl;

g(&x,y);
cout << "x:␣" << x;
cout << "␣y:␣" << y << endl;

}

Pointers and References 58/75

Interfaces and Implementations
Description

‘Each class must have two parts: an interface and an implementation. . . The interface
of a class is the one place where we assert all of the assumptions that a client may
make about any instances of the class; the implementation encapsulates details about
which no client may make assumptions.’ (Booch, Maksimchuk, Engle, Young, Conallen
and Houston 2007, p. 51)

Interfaces and Implementations 59/75

Interfaces and Implementations
Example

Java’s interfaces are a set of method declarations without implementation.
C++ has no interfaces but we can think in the header files as the “interfaces” of the classes.

Interfaces and Implementations 60/75

Multiple Inheritance

‘The diamond problem is an ambiguity that
arises when two classes B and C inherit from A,
and class D inherits from both B and C. If there
is a method in A that B and C have overridden,
and D does not override it, then which version
of the method does D inherit: that of B, or that
of C?’

Description and figure from Wikipedia (2023-09-05).

Multiple Inheritance 61/75

Multiple Inheritance
Example

C++ supports multiple inheritance.
See the oop/multiple-inheritance.cc file.
Java does not support multiple inheritance on classes but it is supported on interfaces.
See the oop/java-multiple-inheritance directory.

Multiple Inheritance 62/75

Function Overloading
Definition
Function overloading is a feature of some programming languages where it is possible to define
multiple functions with the same name but different parameters.

Example (C++)
See the oop/function-overloading.cc file.

Remark
‘When a function is overloaded, each function of the same name should implement the
same semantics.’ (Stroustrup 2019, p. 5)

Function Overloading 63/75

Function Overloading
Definition
Function overloading is a feature of some programming languages where it is possible to define
multiple functions with the same name but different parameters.

Example (C++)
See the oop/function-overloading.cc file.

Remark
‘When a function is overloaded, each function of the same name should implement the
same semantics.’ (Stroustrup 2019, p. 5)

Function Overloading 64/75

Function Overloading
Definition
Function overloading is a feature of some programming languages where it is possible to define
multiple functions with the same name but different parameters.

Example (C++)
See the oop/function-overloading.cc file.

Remark
‘When a function is overloaded, each function of the same name should implement the
same semantics.’ (Stroustrup 2019, p. 5)

Function Overloading 65/75

Function Overloading
Question
Let’s suppose we have defined the following overload functions in C++:
void fn(int, double);
void fn(double, int);

What happens if we write/call the function fn(0,0)?

Function Overloading 66/75

C++ Templates
Definition

‘A template is a class or a function that we parameterize with a set of types or values.’
(Stroustrup 2019, p. 79)

Use
‘We use templates to represent ideas that are best understood as something general
from which we can generate specific types and functions by specifying arguments.’
(Stroustrup 2019, p. 79)

Example
See directory oop/templates.

C++ Templates 67/75

C++ Templates
Definition

‘A template is a class or a function that we parameterize with a set of types or values.’
(Stroustrup 2019, p. 79)

Use
‘We use templates to represent ideas that are best understood as something general
from which we can generate specific types and functions by specifying arguments.’
(Stroustrup 2019, p. 79)

Example
See directory oop/templates.

C++ Templates 68/75

C++ Templates
Definition

‘A template is a class or a function that we parameterize with a set of types or values.’
(Stroustrup 2019, p. 79)

Use
‘We use templates to represent ideas that are best understood as something general
from which we can generate specific types and functions by specifying arguments.’
(Stroustrup 2019, p. 79)

Example
See directory oop/templates.

C++ Templates 69/75

Exception Handling
Definition

‘Exception handling is the process of responding to the occurrence of exceptions—
anomalous or exceptional conditions requiring special processing—during the execution
of a program. In general, an exception breaks the normal flow of execution and executes
a pre-registered exception handler.’ (Wikipedia 2023-09-07)

Exception Handling 70/75

Exception Handling
Exception handling using programming languages constructs
Various programming languages (e.g. C++, Java, Haskell, Python and Standard ML) have throw
and try-catch statements for handling exceptions.

Example (C++)
See the oop/exceptions.cc file.

Exception Handling 71/75

Exception Handling
Exception handling using programming languages constructs
Various programming languages (e.g. C++, Java, Haskell, Python and Standard ML) have throw
and try-catch statements for handling exceptions.

Example (C++)
See the oop/exceptions.cc file.

Exception Handling 72/75

Exception Handling
Definition

‘A signal is an asynchronous notification sent to a process or to a specific thread
within the same process in order to notify it of an event that occurred.’ (Wikipedia
2019-10-02)

Example (signal handling in C++)
See the oop/signal-handling.cc file.

Exception Handling 73/75

Exception Handling
Definition

‘A signal is an asynchronous notification sent to a process or to a specific thread
within the same process in order to notify it of an event that occurred.’ (Wikipedia
2019-10-02)

Example (signal handling in C++)
See the oop/signal-handling.cc file.

Exception Handling 74/75

References
Armstrong, Deborah J. (2006). The Quarks of Object-Oriented Development. Communications of
the ACM 49.2, pp. 123–128. doi: 10.1145/1113034.1113040 (cit. on pp. 3, 4, 33–38).
Booch, Grady, Maksimchuk, Robert A., Engle, Michael W., Young, Bobbi J., Conallen, Jim and
Houston, Kelli A. [1991] (2007). Object-Oriented Analysis and Design with Applications. 3rd ed.
Addison-Wesley (cit. on pp. 33–38, 59).
Lee, Kent D. [2014] (2017). Foundations of Programming Languages. 2nd ed. Undergraduate Topics
in Computer Science. Springer (cit. on p. 2).
Silberschatz, Abraham, Galvin, Peter Baer and Gagne, Greg [2002] (2018). Operating System
Concepts. 10th ed. Wiley (cit. on p. 54).
Stroustrup, Bjarne [2013] (2019). A Tour of C++. 2nd ed. C++ In-Depth Series. Third printing.
Addison-Wesley (cit. on pp. 28–32, 63–65, 67–69).
Tanenbaum, Andrew S. and Bos, Herbert [1992] (2014). Modern Operating Systems. 4th ed. Pearson
(cit. on p. 55).

References 75/75

https://doi.org/10.1145/1113034.1113040

	Preliminaries
	Introduction
	The Java Environment
	The C++ Environment
	Classes and Objects
	Inheritance and Polymorphism
	Namespaces
	Linking
	The Main Function
	I/O Streams
	Garbage Collection (GC)
	Threading
	Pointers and References
	Interfaces and Implementations
	Multiple Inheritance
	Function Overloading
	C++ Templates
	Exception Handling
	References

