
ST0244 Programming Languages
7. Logic Programming

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2023-2

Preliminaries
Conventions

The number and page numbers assigned to chapters, examples, exercises, figures, quotes,
sections and theorems on these slides correspond to the numbers assigned in the textbook [Lee
2017].

The source code examples are in course’s repository.

Preliminaries 2/22

Introduction
From prescriptive language to descriptive languages (p. 278)

‘Assembly languages are very prescriptive language, meaning that you must think in terms
of the particular machine and solve problems accordingly. Programmers must think in terms
of the von Neumann machine stored program computer model.’

‘C++, Java and Python are high-level languages and hence allows you to think in a more
descriptive way about a problem. However, the underlying computational model is still the
von Neumann machine.’

‘[Haskell and] Standard ML are high-level languages too, but allows the programmer to think
in a mathematical way about a problem. These languages get away from the traditional
von Neumann model in some ways.’

‘Prolog takes the descriptive component of languages further and lets programmers write
programs based solely on describing relationships.’

Introduction 3/22

Introduction
From prescriptive language to descriptive languages (p. 278)

‘Assembly languages are very prescriptive language, meaning that you must think in terms
of the particular machine and solve problems accordingly. Programmers must think in terms
of the von Neumann machine stored program computer model.’

‘C++, Java and Python are high-level languages and hence allows you to think in a more
descriptive way about a problem. However, the underlying computational model is still the
von Neumann machine.’

‘[Haskell and] Standard ML are high-level languages too, but allows the programmer to think
in a mathematical way about a problem. These languages get away from the traditional
von Neumann model in some ways.’

‘Prolog takes the descriptive component of languages further and lets programmers write
programs based solely on describing relationships.’

Introduction 4/22

Introduction
From prescriptive language to descriptive languages (p. 278)

‘Assembly languages are very prescriptive language, meaning that you must think in terms
of the particular machine and solve problems accordingly. Programmers must think in terms
of the von Neumann machine stored program computer model.’

‘C++, Java and Python are high-level languages and hence allows you to think in a more
descriptive way about a problem. However, the underlying computational model is still the
von Neumann machine.’

‘[Haskell and] Standard ML are high-level languages too, but allows the programmer to think
in a mathematical way about a problem. These languages get away from the traditional
von Neumann model in some ways.’

‘Prolog takes the descriptive component of languages further and lets programmers write
programs based solely on describing relationships.’

Introduction 5/22

Introduction
From prescriptive language to descriptive languages (p. 278)

‘Assembly languages are very prescriptive language, meaning that you must think in terms
of the particular machine and solve problems accordingly. Programmers must think in terms
of the von Neumann machine stored program computer model.’

‘C++, Java and Python are high-level languages and hence allows you to think in a more
descriptive way about a problem. However, the underlying computational model is still the
von Neumann machine.’

‘[Haskell and] Standard ML are high-level languages too, but allows the programmer to think
in a mathematical way about a problem. These languages get away from the traditional
von Neumann model in some ways.’

‘Prolog takes the descriptive component of languages further and lets programmers write
programs based solely on describing relationships.’

Introduction 6/22

Introduction
Features of logic programming’s languages (pp. 277-278)

‘Descriptive languages: Programs are expressed as known facts and logical relationships
about a problem. Programmers assert the existence of the desired result and a logic
interpreter then uses the computer to find the desired result by making inferences to prove
its existence.’

‘Non-procedural languages: The programmer states only what is to be accomplished and
leaves it to the interpreter to determine how it is to be accomplished.’

‘Relational languages: Desired results are expressed as relations or predicates instead of
as functions. Rather than define a function for calculating a square root, the programmer
defines a relation, say sqrt(x, y), that is true exactly when y2 = x.’

Introduction 7/22

Introduction
Features of logic programming’s languages (pp. 277-278)

‘Descriptive languages: Programs are expressed as known facts and logical relationships
about a problem. Programmers assert the existence of the desired result and a logic
interpreter then uses the computer to find the desired result by making inferences to prove
its existence.’

‘Non-procedural languages: The programmer states only what is to be accomplished and
leaves it to the interpreter to determine how it is to be accomplished.’

‘Relational languages: Desired results are expressed as relations or predicates instead of
as functions. Rather than define a function for calculating a square root, the programmer
defines a relation, say sqrt(x, y), that is true exactly when y2 = x.’

Introduction 8/22

Introduction
Features of logic programming’s languages (pp. 277-278)

‘Descriptive languages: Programs are expressed as known facts and logical relationships
about a problem. Programmers assert the existence of the desired result and a logic
interpreter then uses the computer to find the desired result by making inferences to prove
its existence.’

‘Non-procedural languages: The programmer states only what is to be accomplished and
leaves it to the interpreter to determine how it is to be accomplished.’

‘Relational languages: Desired results are expressed as relations or predicates instead of
as functions. Rather than define a function for calculating a square root, the programmer
defines a relation, say sqrt(x, y), that is true exactly when y2 = x.’

Introduction 9/22

Getting Started with Prolog
Introduction

Prolog is the programming language usually associated with logic programming.

Prolog was developed in 1972 by Alain Colmerauer and Phillipe Roussel.

Prolog is based on first-order logic and unification (variables unify to terms). It is not based
on the von Neumann architecture.

Unification is made using depth-first search and backtracking.

There are various versions of Prolog available including SWI-Prolog and GNU Prolog.

Some references: [Clocksin and Mellish 2003], [Ulf and Maluszyński 2000] and [Apt 1996].

Getting Started with Prolog 10/22

Getting Started with Prolog
Example
See file lp/family.pl.

Getting Started with Prolog 11/22

Fundamentals
Terminology

Variables

Atoms (textual constants)

Numbers (numeric constants)

Terms (variables or constants)

Predicates (properties or relations)

Facts (predicates instanced)

Fundamentals 12/22

Fundamentals
Definition
A Prolog program is a set of facts and predicates [Clocksin and Mellish 2003].

Fundamentals 13/22

Fundamentals
Example
In lp/family.pl we have for example:

Atoms

bruce and esther.

Predicates

female(X) and parent(X,Y).

Facts

female(michelle), male(john) and parent(gary,kent).

Fundamentals 14/22

Fundamentals
Example
We define the binary predicate (relation) father.

X is a father of Y if (:-) X is a parent of Y and (,) X is male:

father(X,Y) :- parent(X,Y), male(X).

Fundamentals 15/22

The Prolog Program

Prolog performs unification to search for a solution.

In general, unification is the process of solving a set of equations between symbolic expressions:
Getting a list of substitutions of terms by variables.

For getting a valid substitution, Prolog uses depth-first search and backtracking.

Example
Using the lp/family.pl we have:

? - father(gary,X).
X = kent;
X = stephen;
X = anne.

The Prolog Program 16/22

Lists

Prolog supports lists:
The empty list is written [].

The list with head H and tail T is written [H|T].

Sugar syntax: [1,2,3] denotes the list [1|[2|[3|[]]]].

Sugar syntax: [1] denotes the list [1|[]].

Since Prolog uses depth-first search and backtracking we can also uses [H|T] for pattern
matching.

Lists 17/22

Lists
Example
See file lp/lists.pl.

Lists 18/22

Lists
Example
Rule 1: sublist(X,Y) :- append(_,X,L), append(L,_,Y).
Rule 2: append([],Y,Y).
Rule 3: append([H|T1],L2,[H|T3]) :- append(T1,L2,T3).

sublist([1],[1,2])
Rule 1

append(A,[1],L)
Rule 2, A=[], L=[1]

append([],[1],[1])
Fact

append(L,R,[1,2])
Rewrite using L=[1]

append([1],R,[1,2])
Rule 3

append([],R,[2])
Rule 2, R=[2]

append([],[2],[2])
Fact

Lists 19/22

The Accumulator Pattern
Example
See file lp/reverse.pl.

The Accumulator Pattern 20/22

Built-In Predicates

X = Y succeeds if X and Y unify.
X \= Y succeeds if X and Y do not unify.
Relational operators on numbers on infix form (<, >, =<, >=, =:= and =\=).
The not/1 predicate checks that the argument (predicate) does not hold.
The atom/1 predicate checks that the argument is an atom.
The number/1 predicate checks that the argument is a number.

Built-In Predicates 21/22

References
Apt, Krzystof R. (1996). From Logic Programming to Prolog. Series in Computer Sciences. Prentice-
Hall (cit. on p. 10).
Clocksin, William F. and Mellish, Christopher S. [1981] (2003). Programming in Prolog. 5th ed.
Springer. doi: 10.1007/978-3-642-55481-0 (cit. on pp. 10, 13).
Lee, Kent D. [2014] (2017). Foundations of Programming Languages. 2nd ed. Undergraduate Topics
in Computer Science. Springer (cit. on p. 2).
Ulf, Nilsson and Maluszyński, Jan [1990] (2000). Logic, Programming and Prolog. 2nd ed. John
Wiley & Sons (cit. on p. 10).

References 22/22

https://doi.org/10.1007/978-3-642-55481-0

	Preliminaries
	Introduction
	Getting Started with Prolog
	Fundamentals
	The Prolog Program
	Lists
	The Accumulator Pattern
	Built-In Predicates
	References

