
ST0244 Programming Languages
1. Introduction

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2023-2



Pedagogical Pact
Course web page
http://www1.eafit.edu.co/asr/courses/st0244-programming-languages/

Official channel, exams, programming labs, course’s repository, etc.
See course web page.

Responsibilities
Lecturer
Students

Pedagogical Pact 2/53

http://www1.eafit.edu.co/asr/courses/st0244-programming-languages/


Pedagogical Pact
Course web page
http://www1.eafit.edu.co/asr/courses/st0244-programming-languages/

Official channel, exams, programming labs, course’s repository, etc.
See course web page.

Responsibilities
Lecturer
Students

Pedagogical Pact 3/53

http://www1.eafit.edu.co/asr/courses/st0244-programming-languages/


Preliminaries
Conventions

The number and page numbers assigned to chapters, examples, exercises, figures, quotes,
sections and theorems on these slides correspond to the numbers assigned in the textbook [Lee
2017].
The source code examples are in course’s repository.

Preliminaries 4/53



Textbook’s First Paragraph

‘A career in computer science is a commitment to a lifetime of learning. You will not
be taught every detail you will need in your career while you are a student. The goal
of a computer science education is to give you the tools you need so you can teach
yourself new languages, frameworks, and architectures as they come along.’ (p. v)

Introduction 5/53



Initial Remarks

From: ‘The Next 7000 Programming Languages’ [Chatley, Donaldson and Mycroft 2019].

Evolution:
‘Language implementations have evolved to help humans manage this complexity.’
(p. 255)

(continued on next slide)

Introduction 6/53



Initial Remarks

From: ‘The Next 7000 Programming Languages’ [Chatley, Donaldson and Mycroft 2019].
Evolution:

‘Language implementations have evolved to help humans manage this complexity.’
(p. 255)

(continued on next slide)

Introduction 7/53



Initial Remarks

Universal programming language?
‘We might hope for a single universal language which is suitable for all niches, as has
been a recurring hope since Landin’s time. However, the evolutionary model does not
predict this. It says nothing about the existence of such a language, and past attempts
to create universal languages do not add encouragement.’ (p. 279)

(continued on next slide)

Introduction 8/53



Initial Remarks

Which language should I use?
‘Another decision point in choosing a language is “get it working” versus “get it right”
versus “get it fast/efficient”. In different situations, each might be appropriate, and
the software-system context, or niche, determines the fitness of individual languages
and hence guides the language choice. A quick script to do some data-processing is
obviously quite different from an I/O driver, or the control system of a safety-critical
device.’ (p. 255)

(continued on next slide)

Introduction 9/53



Popularity of Programming Languages

TIOBE index: https://www.tiobe.com/tiobe-index/

GitHub: https://octoverse.github.com/2022/top-programming-languages

Introduction 10/53

https://www.tiobe.com/tiobe-index/
https://octoverse.github.com/2022/top-programming-languages


Course Outline

Introduction
Syntax
Object-Oriented Programming
Functional Programming
Logic Programming

Introduction 11/53



Programming Paradigms
Definition
A programming language is a formal language for writing computer programs.

Question
What means the ‘formal’ adjective in the above definition?

Programming Paradigms 12/53



Programming Paradigms
Definition
A programming language is a formal language for writing computer programs.

Question
What means the ‘formal’ adjective in the above definition?

Programming Paradigms 13/53



Programming Paradigms
Definition
Paradigm:

‘A model of something, or a very clear and typical example of something.’ (Cambridge
Dictionary)

Definition
Programming paradigms are:

‘Ways of thinking about programming.’ (p. v)

‘High-level approaches for viewing computation.’ (Turbark and Gifford 2008, p. 16)

‘A way to classify programming languages based on their features.’ (Wikipedia, 2019-
07-13)

Programming Paradigms 14/53



Programming Paradigms
Definition
Paradigm:

‘A model of something, or a very clear and typical example of something.’ (Cambridge
Dictionary)

Definition
Programming paradigms are:

‘Ways of thinking about programming.’ (p. v)

‘High-level approaches for viewing computation.’ (Turbark and Gifford 2008, p. 16)

‘A way to classify programming languages based on their features.’ (Wikipedia, 2019-
07-13)

Programming Paradigms 15/53



Programming Paradigms
Motivation
A cognitive bias:

‘If all you have is a hammer, everything looks like a nail.’

Programming Paradigms 16/53



Programming Paradigms
Three programming paradigms

Imperative/object-oriented programming
E.g. C, C++, COBOL, Fortran, Java, Pascal, Python and Rust.
Functional programming
E.g. Haskell, Scheme and Standard ML.
Logic programming
E.g. CLP(R) and Prolog.

Programming Paradigms 17/53



Historical Perspective
Remark
The development of programming languages is based in both theoretical and engineering
developments.

Historical Perspective 18/53



Historical Perspective
Time line∗

c. 1675 Gottfried Wilhelm Leibniz. Characteristica universalis (a universal symbolic language).
Mechanical calculators.

1822 Charles Babbage. Difference engine (mechanical machine for tabulating polynomial
functions).

1928 David Hilbert and Wilhelm Ackermann. The Entscheidungsproblem (decision prob-
lem) [Hilbert and Ackermann 1950].

1935-6 Alonzo Church. Lambda calculus (computability model) and negative solution to the
Entscheidungsproblem [Church 1935, 1936].

1936-7 Alan Turing. Turing machine (computability model) and negative solution to the
Entscheidungsproblem [Turing 1936–1937].

(continued on next slide)
∗A time line must start in some point and it is necessarily incomplete.

Historical Perspective 19/53



Historical Perspective
Time line (continuation)

1939 John Atanasoff and Clifford Berry. The ABC or Atanasoff-Berry Computer. United
States.

c. 1940 Alonzo Church, Alan Turing and Stephen Kleene. The Church-Turing thesis.
1943 Tommy Flowers. The Colossus computer. England.
1945 John von Neumann. Storing the computer programs (there is controversy about the

author(s) of this idea).
1946 John Mauchly and J. Presper Eckert. The ENIAC (Electronic Numerical Integrator and

Computer). United States.
1949 Alan Turing. Design for stored programs and verification of programs [Turing 1949].

(continued on next slide)

Historical Perspective 20/53



Historical Perspective
Time line (continuation)

1957 John Backus and others. FORTRAN [Backus, Beeber, Best, Goldberg, Haibt, Herrick,
Nelson, Sayre, Sheridan, Stern, Ziller, Hughes and Nutt 1957].

1958 John McCarthy. Lisp [McCarthy 1960].
1960 John Backus and others. ALGOL 60 [Backus, Bauer, Green, Katz, McCarthy, Perlis,

Rutishauser, Samelson, Vauquois, Wegstein, Wijngaarden and Woodger 1960].
c. 1960 John Backus and Peter Naur. BNF (Backus-Naur Format)

1965 J. A. Robinson. The resolution principle [Robinson 1965].
1972 Alain Colmerauer and Philippe Roussel. Prolog.

Historical Perspective 21/53



Models of Computation
The von Neumann architecture∗

CPU

Output

Input
Arithmetic Logic

Unit (ALU)

Registers

Control

Memory

(data

+

instructions)

∗Figure 5.1 in [Nisan and Shimon 2005].
Models of Computation 22/53



Models of Computation: The Imperative Model

Features
Decomposition of a program in sub-
programs (functions, procedures, sub-
routines).
Structural programming (top-down or
bottom-up design).
Activation records for functions/procedures.
Division of the data area.

Fig. 1.4

Models of Computation 23/53



Models of Computation: The Imperative Model

Activation records for each function/procedure
invocation

Local variables.
The return address (program counter’s value
before the function/procedure was called).
Value of parameters.

Fig. 1.4

Models of Computation 24/53



Models of Computation: The Imperative Model
Division of the data area

Static or global area
Area for storing data and functions that are
accessible globally in the program (e.g. con-
stants, global variables, and built-in func-
tions)
The run-time stack
Area for storing activation records using a
LIFO order.
The heap
Area for dynamic memory allocation (data
created at run-time) via references and
pointers without pattern to the allocation
and deallocation.

Fig. 1.4

Models of Computation 25/53



Models of Computation: The Functional Model
Features

Persistent (immutable) data (cannot be
change once created).
Functions are first-class citizens.
No difference between program and data.
Since all the work is made via calling func-
tions the run-time stack is more important
than in the imperative model.
The programmer does not interact with the
heap.
The functional programming is more ab-
stract (good) but the programmer has minor
control (bad).

Fig. 1.4

Models of Computation 26/53



Models of Computation: The Logic Model

Features
The programmer does not write a program
but a database with facts and rules (both
are axioms from the logical point of view).
It is debatable whether we should talk of a
division of the data area in the logical model
of computation. Fig. 1.5

Models of Computation 27/53



Brief History of Some Programming Languages
Reading
To read the brief history of C, C++, Java, Prolog, Python and Standard ML in the textbook.

The Origins of a Few Programming Languages 28/53



Language Implementation
Definition
Machine language is the (binary) language that is read, interpreted and executed by the CPU.

Remark
Machine languages are hardware-dependent.

Language Implementation 29/53



Language Implementation
Definition
An assembly language is a symbolic representation (human readable) of the machine language.

Remark
Assembly languages are hardware-dependent.

Example
See the hw/hello-world.asm file.

Language Implementation 30/53



Language Implementation

Languages can be implemented in different ways
A language can be compiled to a machine language.
A language can be interpreted.
A language can be implemented by combining com-
pilation and interpretation.

(Fig. 1.11)

Language Implementation 31/53



Language Implementation
Question
Does the implementation of a programming language depend of the program paradigm represented
by the language?

No!

Definition
A platform is a specific combination of hardware and operating system.

Language Implementation 32/53



Language Implementation
Question
Does the implementation of a programming language depend of the program paradigm represented
by the language? No!

Definition
A platform is a specific combination of hardware and operating system.

Language Implementation 33/53



Language Implementation
Question
Does the implementation of a programming language depend of the program paradigm represented
by the language? No!

Definition
A platform is a specific combination of hardware and operating system.

Language Implementation 34/53



Language Implementation: Compilation

Definition
A compiler is a program that converts a source program
to machine language.

Features
Abstract syntax tree (AST): Internal representation
of the source program.
If you change your source code you need to recompile.

Remark
Compilers are platform-dependent.

(Fig. 1.12)

Language Implementation 35/53



Language Implementation: Compilation
Example
C, C++, COBOL, Fortran, Haskell, Pascal and Rust are compiled languages.

Language Implementation 36/53



Language Implementation: Interpretation

Definition
An interpreter is a program that executes other programs.

Features
You execute your source programming by running the
interpreter.
Research problem: Heap memory management.
Advantage: Portability (the interpreter insulates your
program from CPU architecture and operating system
dependencies).
Disadvantage: Speed of execution.

(Fig. 1.13)

Language Implementation 37/53



Language Implementation: Interpretation
Remark
Interpreters are platform-dependent.

Example
Bash, Haskell, Lisp, Prolog, Python, Ruby and Standard ML are interpreted languages.

Language Implementation 38/53



Language Implementation: Virtual Machines

Definition
‘A virtual machine is a program that provides
insulation from the actual hardware and oper-
ating system of a machine while supplying a
consistent implementation of a set of low-level
instructions, often called bytecode.’ (p. 23)

(Fig. 1.14)

Language Implementation 39/53



Language Implementation: Virtual Machines

Features
Separation of the virtual machine from the compiler.
The programs are compiled to bytecode.
The bytecode programs are interpreted.
The interpretation of bytecode programs is faster than
the interpretation of source code.
The programs implemented via virtual machines are
more portable than programs implemented via com-
pilers.
Programs can be distributed in binary (bytecode)
form.

(Fig. 1.14)
Language Implementation 40/53



Language Implementation: Virtual Machines
Remark
Virtual machines are platform-dependent.

Remark
Bytecode instructions are platform-independent.

Example
C#, Java, Python, Standard ML and Visual Basic.Net are implemented via virtual machines.

Language Implementation 41/53



Types and Type Checking
Types in logic and mathematics
Types as ranges of significance of propositional functions. Let φ(x) be a (unary) propositional
function. The type of φ(x) is the range within which x must lie if φ(x) is to be a proposi-
tion [Russell 1938, Appendix B: The Doctrine of Types].
In modern terminology, Rusell’s types are domains of propositional functions.

Example
Let φ(x) be the propositional function ‘x is a prime number’. Then φ(x) is a proposition only
when its argument is a natural number.

φ : N → {False, True}
φ(x) = x is a prime number.

Types and Type Checking 42/53



Types and Type Checking
Types in programming languages

‘They [programming languages] define types to specify which operations make sense
on which types of data.’ (p. 26)

‘A type is an approximation of a dynamic behaviour that can be derived from the form
of an expression.’ (Kiselyov and Shan 2008, p. 8)

Example
Examples of types include integers, booleans, floating point numbers, characters, strings, lists,
Cartesian products (tuples), discriminated unions, sets, functions, recursive/inductive types and
user-defined types.

Types and Type Checking 43/53



Types and Type Checking
Types systems in programming languages

‘A type system is a tractable syntactic method for proving the absence of certain program
behaviors by classifying phrases according to the kinds of values they compute.’ (Pierce
2002, p. 1)

Types and Type Checking 44/53



Types and Type Checking
Static typing vs dynamic typing∗

∗Figure from en.hexlet.io/courses/intro_to_programming/lessons/types/theory_unit.
Types and Type Checking 45/53

en.hexlet.io/courses/intro_to_programming/lessons/types/theory_unit


Types and Type Checking
Example (statically and dynamically typed programming languages)
Dynamically typed: JavaScript, PHP and Python
Statically typed: C, C++, C#, Haskell, Java, Rust and Standard ML

Types and Type Checking 46/53



Types and Type Checking∗

The static programmer says: The dynamic programmer says:

“Static typing catches bugs with the compiler and
keeps you out of trouble.”

“Static typing only catches some bugs, and you can’t
trust the compiler to do your testing.”

“Static languages are easier to read because they’re
more explicit about what the code does.”

“Dynamic languages are easier to read because you
write less code.”

“At least I know that the code compiles.” “Just because the code compiles doesn’t mean it runs.”

“I trust the static typing to make sure my team writes
good code.”

“The compiler doesn’t stop you from writing bad code.”

“Debugging an unknown object is impossible.” “Debugging overly complex object hierarchies is un-
bearable.”

“Compiler bugs happen at midmorning in my office;
runtime bugs happen at midnight for my customers.”

“There’s no replacement for testing, and unit tests
find more issues than the compiler ever could.”

∗From www.smashingmagazine.com/2013/04/introduction-to-programming-type-systems/.
Types and Type Checking 47/53

www.smashingmagazine.com/2013/04/introduction-to-programming-type-systems/


Types and Type Checking
Discussion

‘Which is better, dynamically or statically typed languages? It depends on the complexity
of the program you are writing and its size. Static typing is certainly desirable if all other
things are equal. But static typing typically does increase the work of a programmer
up front. On the other hand, static typing is likely to decrease the amount of time you
spend testing.’ (p. 27)

Types and Type Checking 48/53



Types and Type Checking
Definition
Let P be a program.
(i) A type system is sound iff

P passed the type checker ⇒ P is a correctly typed program.

(ii) A type system is complete iff

P is a correctly typed program ⇒ P will pass the type checker.

Example
The Standard ML type system is sound and complete.

Types and Type Checking 49/53



Types and Type Checking
Definition
Let P be a program.
(i) A type system is sound iff

P passed the type checker ⇒ P is a correctly typed program.

(ii) A type system is complete iff

P is a correctly typed program ⇒ P will pass the type checker.

Example
The Standard ML type system is sound and complete.

Types and Type Checking 50/53



References
Backus, J. W., Bauer, F. L., Green, J., Katz, C., McCarthy, J., Perlis, A. J., Rutishauser, H.,
Samelson, K., Vauquois, B., Wegstein, J. H., Wijngaarden, A. van and Woodger, M. (1960). Report
on the Algorithmic Language ALGOL 60. Communications of the ACM 3.5. Ed. by Naur, Peter,
pp. 299–314. doi: 10.1145/367236.367262 (cit. on p. 21).
Backus, J. W., Beeber, R. J., Best, S., Goldberg, R., Haibt, L. M., Herrick, H. L., Nelson, R. A.,
Sayre, D., Sheridan, P. B., Stern, H., Ziller, I., Hughes, R. A. and Nutt, R. (1957). The FORTRAN
Automatic Coding System. In: Proceedings Western Joint Computer Conference, pp. 188–198
(cit. on p. 21).
Chatley, Robert, Donaldson, Alastair and Mycroft, Alan (2019). The Next 7000 Programming
Languages. In: Computing and Software Science. State of the Art and Perspectives. Ed. by Steffen,
Bernhard and Woeginger, Gerhard. Vol. 10000. Lecture Notes in Computer Science. Springer,
pp. 250–282. doi: 10.1007/978-3-319-91908-9_15 (cit. on pp. 6, 7).
Church, Alonzo (1935). An Unsolvable Problem of Elementary Number Theory. Preliminar Report
(Abstract). Bulletin of the American Mathematical Society 41.5, pp. 332–333. doi: 10.1090/S0002-
9904-1935-06102-6 (cit. on p. 19).

References 51/53

https://doi.org/10.1145/367236.367262
https://doi.org/10.1007/978-3-319-91908-9_15
https://doi.org/10.1090/S0002-9904-1935-06102-6
https://doi.org/10.1090/S0002-9904-1935-06102-6


References
Church, Alonzo (1936). An Unsolvable Problem of Elementary Number Theory. American Journal
of Mathematics 58.2, pp. 345–363. doi: 10.2307/2371045 (cit. on p. 19).
Hilbert, D. and Ackermann, W. [1938] (1950). Principles of Mathematical Logic. 2nd ed. Translation
of the second edition of Grundzüge der Theoretischen Logik, Springer, 1938. Translated by Lewis M.
Hammond, George G. Leckie and F. Steinhardt. Edited and with notes by Robert E. Luce. Chelsea
Publising Company (cit. on p. 19).
Kiselyov, Oleg and Shan, Chung-chieh (2008). Interpreting Types as Abstract Values. Formosan
Summer School on Logic, Language and Computacion (FLOLAC 2008) (cit. on p. 43).
Lee, Kent D. [2014] (2017). Foundations of Programming Languages. 2nd ed. Undergraduate Topics
in Computer Science. Springer (cit. on p. 4).
McCarthy, John (1960). Recursive Functions of Symbolic Expressions and their Computation by
Machine, Part I. Communications of the ACM 3.4, pp. 184–195. doi: 10.1145/367177.367199
(cit. on p. 21).
Nisan, Noam and Shimon, Schocken (2005). The Elements of Computing Systems. Building a
Modern Computer from First Principles. MIT Press (cit. on p. 22).
Pierce, Benjamin C. (2002). Types and Programming Languages. MIT Press (cit. on p. 44).

References 52/53

https://doi.org/10.2307/2371045
https://doi.org/10.1145/367177.367199


References
Robinson, J. A. (1965). A Machine-Oriented Logic Based on the Resolution Principle. Journal of
the ACM 12.1, pp. 23–41. doi: 10.1145/321250.321253 (cit. on p. 21).
Russell, Bertrand [1903] (1938). The Principles of Mathematics. 2nd ed. W. W. Norton & Company,
Inc (cit. on p. 42).
Turbark, Franklyn and Gifford, David (2008). Design Concepts in Programming Languages. MIT
Press (cit. on pp. 14, 15).
Turing, Alan M. (1936–1937). On Computable Numbers, with an Application to the Entscheidungs-
problem. Proceeding of the London Mathematical Society s2-42, pp. 230–265. doi: 10.1112/plms/
s2-42.1.230 (cit. on p. 19).
— (1949). Checking a Large Routine. In: Report of a Conference on High Speed Automatic
Calculating (cit. on p. 20).

References 53/53

https://doi.org/10.1145/321250.321253
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230

	Pedagogical Pact
	Preliminaries
	Introduction
	Programming Paradigms
	Historical Perspective
	Models of Computation
	The Origins of a Few Programming Languages
	Language Implementation
	Types and Type Checking
	References

