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Preliminaries
Conventions

The number and page numbers assigned to chapters, examples, exercises, figures, quotes,
sections and theorems on these slides correspond to the numbers assigned in the textbook [Lee
2017].

The source code examples are in course’s repository.
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Introduction

Feature Imperative Functional
Assignment of variables Yes No
Iteration Yes No
Recursion Possible Necessary
Higher-order functions Possible Yes
First-class functions No Yes
Side-effects Yes Avoid or isolate
Theoretical model Turing machine Lambda calculus
Program execution Execution of statements Evaluation of expressions
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Introduction
Description

‘A side effect introduces a dependency between the global state of the system and
the behaviour of a function... Side effects are essentially invisible inputs to, or outputs
from, functions.’ (O’Sullivan, Goerzen and Stewart 2008, p. 27)

Description
A pure function is a side-effect free function (e.g. does not cause mutation of mutable objects
nor output to I/O devices). That is, pure functions

‘take all their input as explicit arguments, and produce all their output as explicit
results.’ (Hutton 2016, § 10.1)

Example (C++ and Pascal)
See files fp/side-effect*.
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Lambda Calculus
Introduction

A formal system invented by Alonzo Church around 1930s.

The goal was to use the λ-calculus in the foundation of mathematics.

Intended for studying functions and recursion.

Computability model.

A free-type functional programming language.

λ-notation (e.g. anonymous functions and currying).
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Lambda Calculus
Application
Application of the function M to argument N is denoted by MN (juxtaposition).

Abstraction
‘If M is any formula containing the variable x, then λx[M ] is a symbol for the function
whose values are those given by the formula.’ (Church 1932, p. 352)
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Lambda Calculus
Currying

‘Adopting a device due to Schönfinkel, we treat a function of two variables as a function
of one variable whose values are functions of one variable, and a function of three or
more variables similarly.’ (Church 1932, p. 352)

Such device is called currying after Haskell Curry.

(continued on next slide)

Lambda Calculus 10/123



Lambda Calculus
Currying (continuation)
Let g : X × Y → Z be a function of two variables. We can define two functions fx and f :

fx : Y → Z f : X → (Y → Z)
fx = λy.g(x, y), f = λx.fx.

Then (f x) y = fx y = g(x, y). That is, the function of two variables

g : X × Y → Z

is represented as the higher-order function

f : X → (Y → Z).
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Lambda Calculus
Definition
The set of λ-terms is described by

M, N ::= x (variable)
| (λx.M) (λ-abstraction)
| (MN) (application)

Conventions
λ-term variables will be denoted by x, y, z, . . . .
λ-terms will be denoted by M, N, . . . .

Example
Whiteboard.
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Lambda Calculus
Conventions and syntactic sugar

Outermost parentheses are not written.
Application has higher precedence, that is,

λx.MN := (λx.(MN)).

Application associates to the left, that is,

MN1N2 . . . Nk := (. . . ((MN1)N2) . . . Nk).

Lambda abstraction associates to the right, that is,

λx1x2 . . . xn.M := λx1.λx2. . . . λxn.M

:= (λx1.(λx2.(. . . (λxn.M) . . . ))).
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Lambda Calculus
Definition
The functional behaviour of the λ-calculus is formalised through of their reduction/conversion
rules. The β-reduction rule is defined by

(λx.M)N ⇒ M [ x 7→ N ],

where M [ x 7→ N ] denotes the result of substituting N for every free occurrence of x
in M .∗

Example
Whiteboard.

∗See, e.g. [Barendregt 2004; Hindley and Seldin 2008].
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Lambda Calculus
Definition
A redex is a λ-term of the form (λx.M)N .

Definition
A λ-term which contains no redex is in normal form.
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Lambda Calculus
Definition
A redex is an outermost redex iff it is not contained in any other redex.

A redex is an innermost redex iff it contains no other redex.

Example
Let M := (λy.z)((λx.xx)(λx.xx)). Then

M is an outermost redex.

M is not an innermost redex because it contains a redex.

(λx.xx)(λx.xx) is an innermost redex.

(λx.xx)(λx.xx) is not an outermost redex because it is contained in a redex.
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Lambda Calculus
Definition
The normal order reduction is the evaluation strategy where the left-most outermost redex is
reduced first.

Definition
The applicative order reduction is the evaluation strategy where the left-most innermost redex
is reduced first.
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Lambda Calculus
Example
To reduce (λxyz.xz(yz))(λx.x)(λxy.x) using both normal order reduction and applicative order
reduction.

Normal order reduction

(λxyz.xz(yz))(λx.x)(λxy.x)
⇒ (λyz.(λx.x)z(yz))(λxy.x)
⇒ λz.(λx.x)z((λxy.x)z)
⇒ λz.z((λxy.x)z)
⇒ λz.z(λy.z)

Applicative order reduction

(λxyz.xz(yz))(λx.x)(λxy.x)
⇒ (λyz.(λx.x)z(yz))(λxy.x)
⇒ (λyz.z(yz))(λxy.x)
⇒ λz.z((λxy.x)z)
⇒ λz.z(λy.z)
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Lambda Calculus
Example
Let Ω := (λx.xx)(λx.xx). To reduce (λy.z)Ω using both normal order reduction and applicative
order reduction.

Normal order reduction

(λy.z)Ω
⇒ z

Applicative order reduction

(λy.z)Ω
= (λy.z)((λx.xx)(λx.xx))
⇒ (λy.z)((λx.xx)(λx.xx))
⇒ (λy.z)((λx.xx)(λx.xx))
⇒ . . .
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Lambda Calculus
Remark
Church [1935, 1936] proved that the set

{ M ∈ λ-terms | M has a normal form }

is undecidable. This was the first undecidable set ever.
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Getting Started with Haskell
Introduction
Haskell is a functional language based on various functional languages which in turn are based
on the λ-calculus. For a very complete history of this language see [Hudak, John Hughes,
Peyton Jones and Wadler 2007].
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Getting Started with Haskell
Important Haskell features∗

Haskell is a pure and lazy functional programming language.

Haskell is higher-order supporting functions as first-class values.

It is strongly typed like Pascal, but more powerful since it supports polymorphic type
checking.

Remark on the sentence:
‘With this strong type checking it is pretty infrequent that you need to debug your
code!! What a great thing!!!’ (p. 184)

(continued on next slide)
∗Almost copy-paste from Section “5.3 Getting Started with Standard ML” in the textbook.
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Getting Started with Haskell
Important Haskell features (continuation)

It provides a safe environment for code development and execution. This means there are
no traditional pointers in Haskell.

Since there are no traditional pointers, garbage collection is implemented in the Haskell
system.

Pattern-matching is provided for conveniently writing recursive functions.

Lists are a built-in data type.

A library of commonly used functions and data structures is available called the Base Library.
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Getting Started with Haskell
Suggested reading
J. Hughes [1989, p. 107] wrote:

‘In this paper, we have argued that modularity is the key to successful programming
[...] Functional programming languages provide two new kinds of glue—higher-order
functions and lazy evaluation. Using these glues one can modularise programs in new
and exciting ways [...] Smaller and more general modules can be re-used more widely,
easing subsequent programming. This explains why functional programs are so much
smaller and easier to write than conventional ones.’

Remark
The above paper was written in 1984 and it circulated as a memo. The paper did not use Haskell
but Miranda, a predecessor of Haskell.
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Expressions, Types, Functions and Guards
Example

factorial 0 = 1
factorial n = n * factorial (n - 1)

Question
Is the factorial function correct?

factorial :: Int -> Int
factorial 0 = 1
factorial n = n * factorial (n - 1)

From the type of the function we know the function is buggy. Why?
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Expressions, Types, Functions and Guards
Example
One solution for the buggy factorial function using guards.

factorial :: Int -> Int
factorial n
| n == 0 = 1
| n > 0 = n * factorial (n - 1)
| otherwise = error "factorial: n < 0"

Other solutions (humor)
Google for ‘The evolution of a Haskell programmer’.
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Currying
Functions for currying and uncurrying
(i) Converts an uncurried function to a curried function.

curry :: ((a, b) -> c) -> a -> b -> c

(ii) Converts a curried function to a function on pairs.

uncurry :: (a -> b -> c) -> (a, b) -> c
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Lists
Inductive definition
Haskell has built-in syntax for lists, where a list is either:

the empty list, written [], or
a first element x and a list xs, written (x : xs).

The operator ‘:‘ is usually called cons.
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Lists
Example (recursive function using pattern matching on lists)
Returns the length of a finite list of Int’s as an Int.

lengthInt :: [Int] -> Int
lengthInt [] = 0
lengthInt (x : xs) = 1 + lengthInt xs

Question
What about the length function on lists of Booleans?

Returns the length of a finite list of Bools’s as an Int.

lengthBool :: [Bool] -> Int
lengthBool [] = 0
lengthBool (x : xs) = 1 + lengthBool xs
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Lists
Example (recursive function using pattern matching on lists)
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Lists
Question
Can we avoid the boilerplate code? Yes!
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Parametric Polymorphism
Lists
The built-in lists are parametric polymorphics.

GHCi> :t []
[] :: [a]

GHCi> :t (:)
(:) :: a -> [a] -> [a]
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Parametric Polymorphism
Example
Returns the length of a finite list (of any type) as an Int.

length :: [a] -> Int
length [] = 0
length (x : xs) = 1 + length xs
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Parametric Polymorphism
Example
Appends two lists.

(++) :: [a] -> [a] -> [a]
(++) [] ys = ys
(++) (x : xs) ys = x : xs ++ ys
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Parametric Polymorphism
Example (functions from the basic library)

Extracts the first element of a list, which must be non-empty.

head :: [a] -> a

Extracts the last element of a list, which must be finite and non-empty.

last :: [a] -> a

Extracts the elements after the head of a list, which must be non-empty.

tail :: [a] -> [a]
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Parametric Polymorphism
Example (functions from the basic library)

Returns all the elements of a list except the last one. The list must be non-empty.

init :: [a] -> [a]

Tests whether a list is empty.

null :: [a] -> Bool
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Recursion
Definition
A function is recursive iff it calls itself.
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Recursion
Writing recursive functions (p. 188)

1. ‘Decide what the function is named, what arguments are passed to it, and what the function
should return.’

2. ‘At least one of the arguments must get smaller each time. Most of the time it is only one
argument getting smaller. Decide which one that will be.’

3. ‘Write the function declaration, declaring the name, arguments types, and return type if
necessary.’

4. ‘Write a base case for the argument that you decided will get smaller. Pick the smallest,
simplest value that could be passed to the function and just return the result for that base
case.’

5. ‘The next step is the crucial step. You don’t write the next statement from left to right.
You write from the inside out at this point.’

(continued on next slide)
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Recursion
Writing recursive functions (p. 188) (continuation)

6. ‘Make a recursive call to the function with a smaller value. For instance, if it is a list
you decided will get smaller, call the function with the tail of the list. If an integer is the
argument getting smaller, call the function with the integer argument minus 1. Call the
function with the required arguments and in particular with a smaller value for the argument
you decided would get smaller at each step.’

7. ‘Now, here’s a leap of faith. That call you made in the last step worked! It returned the
result that you expected for the arguments it was given. Use that result in building the
result for the original arguments passed to the function. At this step it may be helpful to try
a concrete example. Assume the recursive call worked on the concrete example. What do
you have to do with that result to get the result you wanted for the initial call? Write code
that uses the result in building the final result for your concrete example. By considering a
concrete example it will help you see what computation is required to get your final result.’

8. ‘That’s it! Your function is complete and it will work if you stuck to these guidelines.’
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Recursion
Example
The previous functions are recursive functions.

factorial :: Int -> Int
length :: [a] -> Int
(++) :: [a] -> [a] -> [a]
last :: [a] -> a
init :: [a] -> [a]
null :: [a] -> Bool
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Characters and Strings

In Haskell the type of characters is Char and the type String is a type synonymous of [Char].
That is, a string is a list of characters.

Example

’a’ -- Character.
’a’ : ’b’ : ’c’ : [] -- List of characters.
[’a’,’b’,’c’] -- List of characters.
"abc" -- String.

-- List of strings.
["hello","how"] ++ ["are","you?"]
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Lazy Evaluation

Nothing is evaluated until necessary.

Example (also in other programming languages)

-- Boolean disjunction.
(||) :: Bool -> Bool -> Bool
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Lazy Evaluation
Example

foo :: Int -> Bool -- Non-terminating function.
foo n = foo (n + 1)

bar :: Int -> Bool
bar n = True || foo n

Question
Which is the value of bar 10?

GHCi> bar 10
True
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Lazy Evaluation

Example (from http://stackoverflow.com/questions/30688558/)

dh :: Int -> Int -> (Int, Int)
dh d q = (2^d, q^d)

a :: (Int, Int)
a = dh 2 (fst b)

b :: (Int, Int)
b = dh 3 (fst a)

Question
Which is the value of a?

GHCi> a
(4,64)
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Lazy Evaluation
Example
The expression take n, applied to a list xs, returns the prefix of xs of length n, or xs itself if
n > length xs.

take :: Int -> [a] -> [a]

Unbounded list.

ones :: [Int]
ones = 1 : ones

Question
Which is the value of take 5 ones?

GHCi> take 5 ones
[1,1,1,1,1]
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Algebraic Data Types and Pattern Matching
Example

data Bool = True | False

True and False are the (data) constructors for the data type Bool.

Example (function by pattern matching)

(||) :: Bool -> Bool -> Bool
True || _ = True
False || x = x
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Algebraic Data Types and Pattern Matching
Example

data Day = Mon | Tue | Wed | Thu | Fri | Sat | Sun

Function by pattern matching.

nextDay :: Day -> Day
nextDay Mon = Tue
nextDay Tue = Wed
nextDay Wed = Thu
nextDay Thu = Fri
nextDay Fri = Sat
nextDay Sat = Sun
nextDay Sun = Mon
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Algebraic Data Types and Pattern Matching
Example (recursive data type)

data Nat = Zero | Succ Nat

Example (structural recursive function by pattern matching)

(+) :: Nat -> Nat -> Nat
Zero + n = n
(Succ m) + n = Succ (m + n)
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Algebraic Data Types and Pattern Matching
Example (polymorphic data type)

data List a = Nil | Cons a (List a)

-- The built-in lists.
data [] a = [] | a : [a]
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Algebraic Data Types and Pattern Matching
Example (polymorphic data type)

data List a = Nil | Cons a (List a)
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data [] a = [] | a : [a]
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Tuples
Example
See file fp/Tuples.hs.
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Let Expressions and Where Clauses
Example
See file fp/LetWhere.hs.

Example
From [Hudak, Peterson and Fasel 1999].

let y = a * b
f x = (x + y)/y

in f c + f d

The bindings created by a let expression are mutually recursive.

The declarations permitted in let expressions include type signatures and function bindings.
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Let Expressions and Where Clauses
Example
From [Hudak, Peterson and Fasel 1999].

f x y | y > z = ...
| y == z = ...
| y < z = ...

where z = x * x

A where clause is part of the syntax of function declarations.

In this case, we cannot replace the where clause by a let expression.
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Efficiency of Recursion

Example (Fibonnaci function)
Very inefficient version.

fib :: Natural -> Natural
fib 0 = 0
fib 1 = 1
fib n = fib (n - 1) +

fib (n - 2)

The number of calls to fib grows
exponentially with the size of n.

fib 4: 9 calls
fib 5: 15 calls
fib 6: 15 + 9 calls

Fig. 5.16.

(continued on next slide)Efficiency of Recursion 74/123



Efficiency of Recursion
Example (continuation)
Accumulator pattern version.

fibAP :: Natural -> Natural
fibAP n =
let fibH :: Natural -> Natural -> Natural -> Natural

fibH count current previous =
if count == n then previous
else fibH (count + 1) (current + previous) current

in fibH 0 1 0

(continued on next slide)
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Efficiency of Recursion
Example (continuation)

fibAP 5 = fibH 0 1 0
= fibH 1 1 1
= fibH 2 2 1
= fibH 3 3 2
= fibH 4 5 3
= fibH 5 8 5
= 5

fib(0) = 0,

fib(1) = 1,

fib(2) = 1,

fib(3) = 2,

fib(4) = 3,

fib(5) = 5.

(continued on next slide)
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Efficiency of Recursion
Example (continuation)
Time running fib 42 (file fp/Fibonacci.hs).

$ time ./fibonacci
real 1m4.353s
user 1m4.160s
sys 0m0.192s

Time running fibAP 42 (file fp/Fibonacci.hs).

$ time ./fibonacci
real 0m0.006s
user 0m0.001s
sys 0m0.005s
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Efficiency of Recursion
Example
Reverse of a list using append.

reverse :: [a] -> [a]
reverse [] = []
reverse (x : xs) = reverse xs ++ [x]

Reverse of a list using the accumulator pattern.

reverse :: [a] -> [a]
reverse xs = rev xs []
where
rev [] zs = zs
rev (y : ys) zs = rev ys (y : zs)

See file fp/Reverse.hs.
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Tail Recursion
Problem
Recursive function calls takes longer than executing a simple loop.

Solution
Tail recursion optimisation: Implement tail recursive functions using jump or branching instruc-
tions.

Definition
‘A tail recursive function is a function where the very last operation of the function
is the recursive call to itself.’ (p. 203)

Example (Factorial function)
See directory fp/factorial.
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Anonymous Functions
Example
The anonymous function λxy.y2 + x can be represented in Hakell by

\ x y -> y * y + x

We applied the anonymous functions as usual

(\ x y -> y * y + x) 3 4

We also can bind an identifier to the anonymous function

foo :: Int -> Int -> Int
foo = (\ x y -> y * y + x)
foo 3 4
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Higher-Order Functions
Definition
A function is higher-order iff

i) it takes a function as a parameter or

ii) it returns a function as its result.
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Higher-Order Functions
Example
The composition operator (.) composes two functions. It is defined in the base library by

(.) :: (b -> c) -> (a -> b) -> a -> c
(.) f g = \ x -> f (g x)

See file fp/HigherOrder.hs.
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Higher-Order Functions
Example
The map functions applies a function to every element of a list.

The expression map f xs is the list obtained by applying f to each element of xs.

The map function is defined in the base library by

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x : xs) = f x : map f xs

See file fp/HigherOrder.hs.
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Higher-Order Functions
Example
The foldr function (on lists) reduces a list using a binary operator from right to left, i.e.

foldr f z [x1, x2, ..., xn] ==
x1 ‘f‘ (x2 ‘f‘ ... (xn ‘f‘ z)...)

The foldr function on lists can be defined by

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x : xs) = f x (foldr f z xs)

See file fp/HigherOrder.hs.
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Higher-Order Functions
Example
The foldl function (on lists) reduces a list using a binary operator from left to right, i.e.

foldl f z [x1, x2, ..., xn] ==
(...((z ‘f‘ x1) ‘f‘ x2) ‘f‘...) ‘f‘ xn
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foldl :: (a -> b -> b) -> b -> [a] -> b
foldl f z [] = z
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Higher-Order Functions
Example
The filter function returns those elements of a list that satisfy a predicate (i.e., a function
a -> Bool).

The filter function is defined in the base library by

filter :: (a -> Bool) -> [a] -> [a]
filter _ [] = []
filter p (x : xs)
| p x = x : filter p xs
| otherwise = filter p xs
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Type Classes
Example
Does the element occur in the list?

elem :: a -> [a] -> Bool
elem x [] = False
elem x (y : ys) = x == y || elem x ys

The above code generates the following error:

error: No instance for (Eq a) arising from a use of ‘==’

(continued on next slide)
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Type Classes
Example (continuation)
We can fix the error by adding the type constraint Eq a which restricts the type a to instances
of the type class Eq.

elem :: Eq a => a -> [a] -> Bool
elem x [] = False
elem x (y : ys) = x == y || elem x ys
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Type Classes
Description
Type classes provide a structured way to control ad hoc polymorphism, or overloading.

Example
The type class Eq is defined by

class Eq a where
(==) :: a -> a -> Bool
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Type Classes
Example
The data types Bool and Nat are instances of the type class Eq.

instance Eq Bool where
True == True = True
False == False = True
_ == _ = False

instance Eq Nat where
Zero == Zero = True
Zero == (Succ _) = False
(Succ _) == Zero = False
(Succ m) == (Succ n) = m == n
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Type Classes
Example

data Day = Mon | Tue | Wed | Thu | Fri | Sat | Sun

GHCi> elem Mon [Tue, Sat, Sun]

error: No instance for (Eq Day) arising from a use of ‘==’

(continued on next slide)
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Type Classes
Example (continuation)
A solution: Adding the missing instance

instance Eq Day where
Mon == Mon = True
Tue == Tue = True
Wed == Wed = True
Thu == Thu = True
Fri == Fri = True
Sat == Sat = True
Sun == Sun = True
_ == _ = False

(continued on next slide)
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Type Classes
Example (continuation)
A solution: Using the deriving mechanism

data Day = Mon | Tue | Wed | Thu | Fri | Sat | Sun
deriving Eq
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Continuation Passing Style
Description

‘Continuation Passing Style (or CPS) is a way of writing functional programs where
control is made explicit. In other words, the continuation represents the remaining
work to be done.’ (p. 212)

Example
See file fp/CPS.hs.
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Input and Output
The problem
How can programs with input and output be modelled as pure functions?

The solution
There are various approaches for using pure functions and side-effects (see, e.g. [Peyton Jones
and Wadler 1993]). Haskell’s solution is via monads.

Input and Output 101/123



Input and Output
The problem
How can programs with input and output be modelled as pure functions?

The solution
There are various approaches for using pure functions and side-effects (see, e.g. [Peyton Jones
and Wadler 1993]). Haskell’s solution is via monads.

Input and Output 102/123



Input and Output
The unit type
The unit type is a type with only one element. Haskell unity type and its element are

() :: ()

The unit type is useful when performing input-output.
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Input and Output
The IO type
The following description of the type IO is from [Hutton 2016, § 10.2].

A program with input-output can be represented by a function

World -> World

type IO = World -> World

What about if the program returns a value?

type IO a = World -> (a, World)

(continued on next slide)

Input and Output 104/123



Input and Output
The IO type
The following description of the type IO is from [Hutton 2016, § 10.2].

A program with input-output can be represented by a function

World -> World

type IO = World -> World

What about if the program returns a value?

type IO a = World -> (a, World)

(continued on next slide)

Input and Output 105/123



Input and Output
The IO type
The following description of the type IO is from [Hutton 2016, § 10.2].
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(continued on next slide)
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Input and Output
The IO type (continuation)
What about if the program requires an argument?

For example, a program requiring a character and returning an integer has the type

Char -> IO Int

Char -> World -> (Int, World)

The compiler has the responsibility of handling the state of world. The type IO a is primitive in
Haskell.
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Input and Output
Definition
An action is an expression of type IO a. When the expression is evaluated the action is performed.

Example
t : IO Char is the action that returns a character.

t : IO () is the action that no returns a value, where () is a dummy result value.
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Input and Output
The abstract datatype IO a

The abstract datatype IO a has (at least) the following operations [Bird 1998, § 10.1]:

return :: a -> IO a
(>>=) :: IO a -> (a -> IO b) -> IO b
putChar :: Char -> IO ()
getChar :: IO Char
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Input and Output
Example
See file fp/IO.hs.
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Testing via QuickCheck

A paper
Claessen, Koen and Hughes, John [2000]. QuickCheck: A Lightweight Tool for Random Testing
of Haskell Programs. ICFP’00. DOI: https://doi.org/10.1145/357766.351266.

Most Influential ICFP Paper Award 2010∗

‘The techniques described in the paper have spawned a significant body of follow-on
work in test case generation. They have also been adapted to other languages . . . ’

∗See www.sigplan.org/Awards/ICFP/.
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Testing via QuickCheck

An open source library
QuickCheck on Hackage.∗

Commercialisation
QuviQ (www.quviq.com/).

∗http://hackage.haskell.org/package/QuickCheck.
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Testing via QuickCheck

Adaptations
QuickCheck has been ported to various languages (Wikipedia 2023-10-17).

C C# C++ Chicken Clojure
Common Lisp Coq D Elm Elixir
Erlang F# Factor Go Io
Java JavaScript Julia Logtalk Lua
Mathematica Objective-C OCaml Perl Prolog
PHP Pony Python R Racket
Ruby Rust Scala Scheme Smalltalk
Standard ML Swift TypeScript Visual Basic .NET Vhiley
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Testing via QuickCheck

False positive
The program works properly but the test pointed out a fail:

There is a bug elsewhere.
There is an error in the specification.

False negative
There is a bug in the program but the test passed.

Recall Dijkstra’s 1969 famous quote:

‘Testing shows the presence, not the absence of bugs.’ (Buxton and Randell 1970)
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Testing via QuickCheck

QuickCheck demo
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