ST0244 Programming Languages
 5. Functional Programming

Andrés Sicard-Ramírez

Universidad EAFIT
Semester 2023-2

Preliminaries

Conventions

- The number and page numbers assigned to chapters, examples, exercises, figures, quotes, sections and theorems on these slides correspond to the numbers assigned in the textbook [Lee 2017].
- The source code examples are in course's repository.

Introduction

Feature	Imperative	Functional
Assignment of variables	Yes	No
Iteration	Yes	No
Recursion	Possible	Necessary
Higher-order functions	Possible	Yes
First-class functions	No	Yes
Side-effects	Yes	Avoid or isolate
Theoretical model	Turing machine	Lambda calculus
Program execution	Execution of statements	Evaluation of expressions

Introduction

Description

'A side effect introduces a dependency between the global state of the system and the behaviour of a function... Side effects are essentially invisible inputs to, or outputs from, functions.' (O'Sullivan, Goerzen and Stewart 2008, p. 27)

Introduction

Description

'A side effect introduces a dependency between the global state of the system and the behaviour of a function... Side effects are essentially invisible inputs to, or outputs from, functions.' (O'Sullivan, Goerzen and Stewart 2008, p. 27)

Description

A pure function is a side-effect free function (e.g. does not cause mutation of mutable objects nor output to I/O devices). That is, pure functions
'take all their input as explicit arguments, and produce all their output as explicit results.' (Hutton 2016, § 10.1)

Introduction

Description

'A side effect introduces a dependency between the global state of the system and the behaviour of a function... Side effects are essentially invisible inputs to, or outputs from, functions.' (O'Sullivan, Goerzen and Stewart 2008, p. 27)

Description

A pure function is a side-effect free function (e.g. does not cause mutation of mutable objects nor output to I / O devices). That is, pure functions
'take all their input as explicit arguments, and produce all their output as explicit results.' (Hutton 2016, § 10.1)

Example (C++ and Pascal)

See files $f p /$ side-effect*.

Lambda Calculus

Introduction

- A formal system invented by Alonzo Church around 1930s.
- The goal was to use the λ-calculus in the foundation of mathematics.
- Intended for studying functions and recursion.
- Computability model.
- A free-type functional programming language.
- λ-notation (e.g. anonymous functions and currying).

Lambda Calculus

Application
Application of the function M to argument N is denoted by $M N$ (juxtaposition).

Lambda Calculus

Application
Application of the function M to argument N is denoted by $M N$ (juxtaposition).

Abstraction

'If M is any formula containing the variable x, then $\lambda x[M]$ is a symbol for the function whose values are those given by the formula.' (Church 1932, p. 352)

Lambda Calculus

Currying

'Adopting a device due to Schönfinkel, we treat a function of two variables as a function of one variable whose values are functions of one variable, and a function of three or more variables similarly.' (Church 1932, p. 352)

Such device is called currying after Haskell Curry.

Lambda Calculus

Currying (continuation)

Let $g: X \times Y \rightarrow Z$ be a function of two variables. We can define two functions f_{x} and f :

$$
\begin{array}{ll}
f_{x}: Y \rightarrow Z & f: X \rightarrow(Y \rightarrow Z) \\
f_{x}=\lambda y \cdot g(x, y), & f=\lambda x \cdot f_{x} .
\end{array}
$$

Then $(f x) y=f_{x} y=g(x, y)$. That is, the function of two variables

$$
g: X \times Y \rightarrow Z
$$

is represented as the higher-order function

$$
f: X \rightarrow(Y \rightarrow Z)
$$

Lambda Calculus

Definition

The set of $\boldsymbol{\lambda}$-terms is described by

$$
\begin{aligned}
M, N::= & x \\
& \mid(\lambda x . M) \\
& \mid(M N)
\end{aligned}
$$

(variable)
(λ-abstraction)
(application)

Lambda Calculus

Definition

The set of $\boldsymbol{\lambda}$-terms is described by

$$
\begin{aligned}
M, N::= & x \\
& \mid(\lambda x . M) \\
& \mid(M N)
\end{aligned}
$$

(variable)
(λ-abstraction)
(application)

Conventions

- λ-term variables will be denoted by x, y, z, \ldots.
- λ-terms will be denoted by M, N, \ldots.

Lambda Calculus

Definition

The set of $\boldsymbol{\lambda}$-terms is described by

$$
\begin{aligned}
M, N::= & x \\
& \mid(\lambda x . M) \\
& \mid(M N)
\end{aligned}
$$

(variable)
(λ-abstraction)
(application)

Conventions

- λ-term variables will be denoted by x, y, z, \ldots.
- λ-terms will be denoted by M, N, \ldots.

Example

Whiteboard.

Lambda Calculus

Conventions and syntactic sugar

- Outermost parentheses are not written.
- Application has higher precedence, that is,

$$
\lambda x \cdot M N:=(\lambda x \cdot(M N)) .
$$

- Application associates to the left, that is,

$$
M N_{1} N_{2} \ldots N_{k}:=\left(\ldots\left(\left(M N_{1}\right) N_{2}\right) \ldots N_{k}\right)
$$

- Lambda abstraction associates to the right, that is,

$$
\begin{aligned}
\lambda x_{1} x_{2} \ldots x_{n} \cdot M & :=\lambda x_{1} \cdot \lambda x_{2} \ldots \lambda x_{n} \cdot M \\
& :=\left(\lambda x_{1} \cdot\left(\lambda x_{2} \cdot\left(\ldots\left(\lambda x_{n} \cdot M\right) \ldots\right)\right)\right) .
\end{aligned}
$$

Lambda Calculus

Definition

The functional behaviour of the λ-calculus is formalised through of their reduction/conversion rules. The β-reduction rule is defined by

$$
(\lambda x \cdot M) N \Rightarrow M[x \mapsto N],
$$

where $M[x \mapsto N]$ denotes the result of substituting N for every free occurrence of x in M.*

Example
Whiteboard.

[^0]
Lambda Calculus

Definition

A redex is a λ-term of the form $(\lambda x . M) N$.
Definition
A λ-term which contains no redex is in normal form.

Lambda Calculus

Definition

A redex is an outermost redex iff it is not contained in any other redex.
A redex is an innermost redex iff it contains no other redex.
Example
Let $M:=(\lambda y \cdot z)((\lambda x \cdot x x)(\lambda x \cdot x x))$. Then

- M is an outermost redex.
- M is not an innermost redex because it contains a redex.
- $(\lambda x . x x)(\lambda x . x x)$ is an innermost redex.
- $(\lambda x . x x)(\lambda x . x x)$ is not an outermost redex because it is contained in a redex.

Lambda Calculus

Definition

The normal order reduction is the evaluation strategy where the left-most outermost redex is reduced first.

Lambda Calculus

Definition

The normal order reduction is the evaluation strategy where the left-most outermost redex is reduced first.

Definition

The applicative order reduction is the evaluation strategy where the left-most innermost redex is reduced first.

Lambda Calculus

Example

To reduce $(\lambda x y z \cdot x z(y z))(\lambda x \cdot x)(\lambda x y \cdot x)$ using both normal order reduction and applicative order reduction.

Normal order reduction

$$
\begin{aligned}
& \underline{(\lambda x y z \cdot x z(y z))(\lambda x \cdot x)(\lambda x y \cdot x)} \\
& \Rightarrow \underline{(\lambda y z \cdot(\lambda x \cdot x) z(y z))(\lambda x y \cdot x)} \\
& \Rightarrow \lambda z \cdot \underline{(\lambda x \cdot x) z((\lambda x y \cdot x) z)} \\
& \Rightarrow \lambda z \cdot z \underline{((\lambda x y \cdot x) z)} \\
& \Rightarrow \lambda z \cdot z \overline{(\lambda y \cdot z)}
\end{aligned}
$$

Applicative order reduction

$$
\begin{aligned}
& (\lambda x y z \cdot x z(y z))(\lambda x \cdot x)(\lambda x y \cdot x) \\
& \Rightarrow(\lambda y z \cdot(\overline{(\lambda x \cdot x) z(y z)})(\lambda x y \cdot x) \\
& \Rightarrow \underline{(\lambda y z \cdot z(y z))(\lambda x y \cdot x)} \\
& \Rightarrow \lambda z \cdot z \underline{((\lambda x y \cdot x) z)} \\
& \Rightarrow \lambda z \cdot z(\lambda y \cdot z)
\end{aligned}
$$

Lambda Calculus

Example

Let $\Omega:=(\lambda x . x x)(\lambda x . x x)$. To reduce ($\lambda y . z) \Omega$ using both normal order reduction and applicative order reduction.

Normal order reduction

$$
\frac{(\lambda y \cdot z) \Omega}{\Rightarrow z}
$$

Applicative order reduction

$$
\begin{aligned}
& (\lambda y \cdot z) \Omega \\
& =(\lambda y \cdot z) \underline{((\lambda x \cdot x x)(\lambda x \cdot x x)}) \\
& \Rightarrow(\lambda y \cdot z) \underline{((\lambda x \cdot x x)(\lambda x \cdot x x)}) \\
& \Rightarrow(\lambda y \cdot z) \underline{((\lambda x \cdot x x)(\lambda x \cdot x x)}) \\
& \Rightarrow \ldots
\end{aligned}
$$

Lambda Calculus

Remark

Church [1935, 1936] proved that the set

$$
\{M \in \lambda \text {-terms } \mid M \text { has a normal form }\}
$$

is undecidable. This was the first undecidable set ever.

Getting Started with Haskell

Introduction

Haskell is a functional language based on various functional languages which in turn are based on the λ-calculus. For a very complete history of this language see [Hudak, John Hughes, Peyton Jones and Wadler 2007].

Getting Started with Haskell

Important Haskell features*

- Haskell is a pure and lazy functional programming language.
- Haskell is higher-order supporting functions as first-class values.
- It is strongly typed like Pascal, but more powerful since it supports polymorphic type checking.

Remark on the sentence:
'With this strong type checking it is pretty infrequent that you need to debug your code!! What a great thing!!!' (p. 184)
(continued on next slide)
*Almost copy-paste from Section "5.3 Getting Started with Standard ML" in the textbook.

Getting Started with Haskell

Important Haskell features (continuation)

- It provides a safe environment for code development and execution. This means there are no traditional pointers in Haskell.
- Since there are no traditional pointers, garbage collection is implemented in the Haskell system.
- Pattern-matching is provided for conveniently writing recursive functions.
- Lists are a built-in data type.
- A library of commonly used functions and data structures is available called the Base Library.

Getting Started with Haskell

Suggested reading
J. Hughes [1989, p. 107] wrote:
'In this paper, we have argued that modularity is the key to successful programming [...] Functional programming languages provide two new kinds of glue-higher-order functions and lazy evaluation. Using these glues one can modularise programs in new and exciting ways [...] Smaller and more general modules can be re-used more widely, easing subsequent programming. This explains why functional programs are so much smaller and easier to write than conventional ones.'

Getting Started with Haskell

Suggested reading
J. Hughes [1989, p. 107] wrote:
'In this paper, we have argued that modularity is the key to successful programming [...] Functional programming languages provide two new kinds of glue-higher-order functions and lazy evaluation. Using these glues one can modularise programs in new and exciting ways [...] Smaller and more general modules can be re-used more widely, easing subsequent programming. This explains why functional programs are so much smaller and easier to write than conventional ones.'

Remark

The above paper was written in 1984 and it circulated as a memo. The paper did not use Haskell but Miranda, a predecessor of Haskell.

Expressions, Types, Functions and Guards

Example

```
factorial 0 = 1
factorial n = n * factorial (n - 1)
```


Expressions, Types, Functions and Guards

Example

```
factorial 0 = 1
factorial n = n * factorial (n - 1)
```

Question
Is the factorial function correct?

Expressions, Types, Functions and Guards

Example

```
factorial 0 = 1
factorial n = n * factorial (n - 1)
```

Question
Is the factorial function correct?

```
factorial :: Int -> Int
factorial 0 = 1
factorial n = n * factorial (n - 1)
```


Expressions, Types, Functions and Guards

Example

```
factorial 0 = 1
factorial n = n * factorial (n - 1)
```

Question
Is the factorial function correct?

```
factorial :: Int -> Int
factorial 0 = 1
factorial n = n * factorial (n - 1)
```

From the type of the function we know the function is buggy. Why?

Expressions, Types, Functions and Guards

Example

One solution for the buggy factorial function using guards.

```
factorial :: Int -> Int
factorial n
    | n == 0 = 1
    | n > 0 = n * factorial (n - 1)
    | otherwise = error "factorial: n < 0"
```


Expressions, Types, Functions and Guards

Example

One solution for the buggy factorial function using guards.

```
factorial :: Int -> Int
factorial n
    | n == 0 = 1
    | n > 0 = n * factorial (n - 1)
    otherwise = error "factorial: n < 0"
```

Other solutions (humor)
Google for 'The evolution of a Haskell programmer'.

Currying

Functions for currying and uncurrying
(i) Converts an uncurried function to a curried function.
curry :: ((a, b) -> c) -> a -> b -> c
(ii) Converts a curried function to a function on pairs.

```
uncurry :: (a -> b -> c) -> (a, b) -> c
```


Lists

Inductive definition

Haskell has built-in syntax for lists, where a list is either:

- the empty list, written [], or
- a first element x and a list xs , written (x : xs).

The operator ': ' is usually called cons.

Lists

Example (recursive function using pattern matching on lists)
Returns the length of a finite list of Int's as an Int.

```
lengthInt :: [Int] -> Int
lengthInt [] = 0
lengthInt (x : xs) = 1 + lengthInt xs
```


Lists

Example (recursive function using pattern matching on lists)
Returns the length of a finite list of Int's as an Int.

```
lengthInt :: [Int] -> Int
lengthInt [] = 0
lengthInt (x : xs) = 1 + lengthInt xs
```

Question
What about the length function on lists of Booleans?

Lists

Example (recursive function using pattern matching on lists)
Returns the length of a finite list of Int's as an Int.

```
lengthInt :: [Int] -> Int
lengthInt [] = 0
lengthInt (x : xs) = 1 + lengthInt xs
```


Question

What about the length function on lists of Booleans?
Returns the length of a finite list of Bools's as an Int.

```
lengthBool :: [Bool] -> Int
lengthBool [] = 0
lengthBool (x : xs) = 1 + lengthBool xs
```


Lists

Question

Can we avoid the boilerplate code? Yes!

Parametric Polymorphism

Lists

The built-in lists are parametric polymorphics.

```
GHCi> :t []
[] :: [a]
GHCi> :t (:)
(:) :: a -> [a] -> [a]
```


Parametric Polymorphism

Example

Returns the length of a finite list (of any type) as an Int.

```
length :: [a] -> Int
length [] = 0
length (x : xs) = 1 + length xs
```


Parametric Polymorphism

Example

Appends two lists.

$$
\begin{aligned}
& (++)::[a]->[a]->[a] \\
& (++)[] \quad y s=y s \\
& (++)(x: x s) y s=x: x s++y s
\end{aligned}
$$

Parametric Polymorphism

Example (functions from the basic library)

- Extracts the first element of a list, which must be non-empty.

```
head :: [a] -> a
```

- Extracts the last element of a list, which must be finite and non-empty.
last :: [a] -> a
- Extracts the elements after the head of a list, which must be non-empty.
tail :: [a] -> [a]

Parametric Polymorphism

Example (functions from the basic library)

- Returns all the elements of a list except the last one. The list must be non-empty.

```
init :: [a] -> [a]
```

- Tests whether a list is empty.
null :: [a] -> Bool

Recursion

Definition
A function is recursive iff it calls itself.

Recursion

Writing recursive functions (p. 188)

1. 'Decide what the function is named, what arguments are passed to it, and what the function should return.'
2. 'At least one of the arguments must get smaller each time. Most of the time it is only one argument getting smaller. Decide which one that will be.'
3. 'Write the function declaration, declaring the name, arguments types, and return type if necessary.'
4. 'Write a base case for the argument that you decided will get smaller. Pick the smallest, simplest value that could be passed to the function and just return the result for that base case.'
5. 'The next step is the crucial step. You don't write the next statement from left to right. You write from the inside out at this point.'

> (continued on next slide)

Recursion

Writing recursive functions (p. 188) (continuation)
6. 'Make a recursive call to the function with a smaller value. For instance, if it is a list you decided will get smaller, call the function with the tail of the list. If an integer is the argument getting smaller, call the function with the integer argument minus 1. Call the function with the required arguments and in particular with a smaller value for the argument you decided would get smaller at each step.'
7. 'Now, here's a leap of faith. That call you made in the last step worked! It returned the result that you expected for the arguments it was given. Use that result in building the result for the original arguments passed to the function. At this step it may be helpful to try a concrete example. Assume the recursive call worked on the concrete example. What do you have to do with that result to get the result you wanted for the initial call? Write code that uses the result in building the final result for your concrete example. By considering a concrete example it will help you see what computation is required to get your final result.'
8. 'That's it! Your function is complete and it will work if you stuck to these guidelines.'

Recursion

Example

The previous functions are recursive functions.

Characters and Strings

In Haskell the type of characters is Char and the type String is a type synonymous of [Char]. That is, a string is a list of characters.

Characters and Strings

In Haskell the type of characters is Char and the type String is a type synonymous of [Char]. That is, a string is a list of characters.

Example

```
'a' -- Character.
'a' : 'b' : 'c' : [] -- List of characters.
['a','b','c'] -- List of characters.
"abc" -- String.
-- List of strings.
["hello","how"] ++ ["are","you?"]
```


Lazy Evaluation

Nothing is evaluated until necessary.

Lazy Evaluation

Nothing is evaluated until necessary.
Example (also in other programming languages)
-- Boolean disjunction.
(||) :: Bool -> Bool -> Bool

Lazy Evaluation

```
Example
foo :: Int -> Bool -- Non-terminating function.
foo n = foo ( }\textrm{n}+1
bar :: Int -> Bool
bar n = True || foo n
```


Lazy Evaluation

```
Example
foo :: Int -> Bool -- Non-terminating function.
foo n = foo ( }\textrm{n}+1
bar :: Int -> Bool
bar n = True || foo n
```

Question
Which is the value of bar 10 ?

Lazy Evaluation

```
Example
foo :: Int -> Bool -- Non-terminating function.
foo n = foo ( }\textrm{n}+1
bar :: Int -> Bool
bar n = True || foo n
```

Question
Which is the value of bar 10?
GHCi> bar 10
True

Lazy Evaluation

Example (from http://stackoverflow.com/questions/30688558/)

```
dh :: Int -> Int -> (Int, Int)
dh d q = (2^d, q^d)
a :: (Int, Int)
a = dh 2 (fst b)
b :: (Int, Int)
b = dh 3 (fst a)
```


Lazy Evaluation

Example (from http://stackoverflow.com/questions/30688558/)

```
dh :: Int -> Int -> (Int, Int)
dh d q = (2^d, q^d)
a :: (Int, Int)
a = dh 2 (fst b)
b :: (Int, Int)
b = dh 3 (fst a)
```

Question
Which is the value of a ?

Lazy Evaluation

Example (from http://stackoverflow.com/questions/30688558/)

```
dh :: Int -> Int -> (Int, Int)
dh d q = (2^d, q^d)
a :: (Int, Int)
a = dh 2 (fst b)
b :: (Int, Int)
b = dh 3 (fst a)
```

Question
Which is the value of a ?
GHCi> a
$(4,64)$

Lazy Evaluation

Example

The expression take n, applied to a list $x s$, returns the prefix of $x s$ of length n, or $x s$ itself if n > length xs.

```
take :: Int -> [a] -> [a]
```

Unbounded list.

```
ones :: [Int]
ones = 1 : ones
```


Lazy Evaluation

Example

The expression take n, applied to a list $x s$, returns the prefix of $x s$ of length n, or $x s$ itself if n > length xs.

```
take :: Int -> [a] -> [a]
```

Unbounded list.

```
ones :: [Int]
ones = 1 : ones
```

Question
Which is the value of take 5 ones?

Lazy Evaluation

Example

The expression take n, applied to a list $x s$, returns the prefix of $x s$ of length n, or $x s$ itself if n > length xs.

```
take :: Int -> [a] -> [a]
```

Unbounded list.

```
ones :: [Int]
ones = 1 : ones
```


Question

Which is the value of take 5 ones?
GHCi> take 5 ones
[1,1,1,1,1]

Algebraic Data Types and Pattern Matching

Example

data Bool = True | False

True and False are the (data) constructors for the data type Bool.

Algebraic Data Types and Pattern Matching

Example

```
data Bool = True | False
```

True and False are the (data) constructors for the data type Bool.

Example (function by pattern matching)

```
(||) :: Bool -> Bool -> Bool
True ||_= True
False || x = x
```


Algebraic Data Types and Pattern Matching

Example

```
data Day = Mon | Tue | Wed | Thu | Fri | Sat | Sun
```

Function by pattern matching.

```
nextDay :: Day -> Day
nextDay Mon = Tue
nextDay Tue = Wed
nextDay Wed = Thu
nextDay Thu = Fri
nextDay Fri = Sat
nextDay Sat = Sun
nextDay Sun = Mon
```


Algebraic Data Types and Pattern Matching

Example (recursive data type)

```
data Nat = Zero | Succ Nat
```


Algebraic Data Types and Pattern Matching

Example (recursive data type)

```
data Nat = Zero | Succ Nat
```

Example (structural recursive function by pattern matching)

```
(+) :: Nat -> Nat -> Nat
Zero + n = n
(Succ m) + n = Succ (m + n)
```


Algebraic Data Types and Pattern Matching

Example (polymorphic data type)
data List $a=N i l \mid$ Cons a (List a)

Algebraic Data Types and Pattern Matching

Example (polymorphic data type)
data List $\mathrm{a}=\mathrm{Nil} \mid$ Cons a (List a)
-- The built-in lists.
data [] a = [] | a : [a]

Tuples

Example
 See file fp/Tuples.hs.

Let Expressions and Where Clauses

Example

See file fp/LetWhere.hs.

Let Expressions and Where Clauses

Example

See file fp/LetWhere.hs.

Example

From [Hudak, Peterson and Fasel 1999].

```
let \(y=a * b\)
    \(f x=(x+y) / y\)
```

in $f c+f d$

- The bindings created by a let expression are mutually recursive.
- The declarations permitted in let expressions include type signatures and function bindings.

Let Expressions and Where Clauses

Example

From [Hudak, Peterson and Fasel 1999].

```
fxy | y>z = ...
    y == z = ...
    | y<z = ...
    where z = x * x
```

- A where clause is part of the syntax of function declarations.
- In this case, we cannot replace the where clause by a let expression.

Efficiency of Recursion

Example (Fibonnaci function)

Very inefficient version.

```
fib :: Natural -> Natural
fib 0 = 0
fib 1 = 1
fib n = fib (n - 1) +
    fib (n - 2)
```

The number of calls to fib grows exponentially with the size of n.
fib 4: 9 calls
fib 5: 15 calls
fib 6: $15+9$ calls

Fig. 5.16.

Efficiency of Recursion

Example (continuation)

Accumulator pattern version.

```
fibAP :: Natural -> Natural
fibAP n =
    let fibH :: Natural -> Natural -> Natural -> Natural
        fibH count current previous =
        if count == n then previous
        else fibH (count + 1) (current + previous) current
    in fibH 0 l 0
```


Efficiency of Recursion

Example (continuation)

$$
\begin{aligned}
\text { fibAP } 5 & =\text { fibH }
\end{aligned} 0
$$

$$
\begin{aligned}
& \operatorname{fib}(0)=0, \\
& \operatorname{fib}(1)=1, \\
& \operatorname{fib}(2)=1, \\
& \operatorname{fib}(3)=2, \\
& \operatorname{fib}(4)=3, \\
& \operatorname{fib}(5)=5 .
\end{aligned}
$$

Efficiency of Recursion

Example (continuation)

Time running fib 42 (file fp/Fibonacci.hs).
\$ time ./fibonacci
real 1m4.353s
user 1m4.160s
sys 0m0.192s

Time running fibAP 42 (file fp/Fibonacci.hs).
\$ time ./fibonacci
real 0m0.006s
user 0m0.001s
sys 0m0.005s

Efficiency of Recursion

Example

Reverse of a list using append.

```
reverse :: [a] -> [a]
reverse [] = []
reverse (x : xs) = reverse xs ++ [x]
```


Efficiency of Recursion

Example

Reverse of a list using append.

```
reverse :: [a] -> [a]
reverse [] = []
reverse (x : xs) = reverse xs ++ [x]
```

Reverse of a list using the accumulator pattern.

```
reverse :: [a] -> [a]
reverse xs = rev xs []
    where
    rev [] zs = zs
    rev (y : ys) zs = rev ys (y : zs)
```

See file fp/Reverse.hs.

Tail Recursion

Problem

Recursive function calls takes longer than executing a simple loop.

Tail Recursion

Problem

Recursive function calls takes longer than executing a simple loop.

Solution

Tail recursion optimisation: Implement tail recursive functions using jump or branching instructions.

Tail Recursion

Problem

Recursive function calls takes longer than executing a simple loop.

Solution

Tail recursion optimisation: Implement tail recursive functions using jump or branching instructions.

Definition

'A tail recursive function is a function where the very last operation of the function is the recursive call to itself.' (p. 203)

Tail Recursion

Problem

Recursive function calls takes longer than executing a simple loop.

Solution

Tail recursion optimisation: Implement tail recursive functions using jump or branching instructions.

Definition

'A tail recursive function is a function where the very last operation of the function is the recursive call to itself.' (p. 203)

Example (Factorial function)
See directory fp/factorial.

Anonymous Functions

Example

The anonymous function $\lambda x y \cdot y^{2}+x$ can be represented in Hakell by

```
x y -> y * y + x
```

We applied the anonymous functions as usual

$$
(\backslash x y->y * y+x) 34
$$

We also can bind an identifier to the anonymous function

```
foo :: Int -> Int -> Int
foo = (\x y -> y * y + x)
foo 3 4
```


Higher-Order Functions

Definition

A function is higher-order iff
i) it takes a function as a parameter or
ii) it returns a function as its result.

Higher-Order Functions

Example

The composition operator (.) composes two functions. It is defined in the base library by

$$
\begin{aligned}
& \text { (.) :: (b -> c) -> (a -> b) -> a -> c } \\
& \text { (.) f } g=\backslash x \rightarrow f(g x)
\end{aligned}
$$

See file fp/HigherOrder.hs.

Higher-Order Functions

Example

The map functions applies a function to every element of a list.
The expression map $f \times s$ is the list obtained by applying f to each element of xs .
The map function is defined in the base library by

```
map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x : xs) = f x : map f xs
```

See file fp/HigherOrder.hs.

Higher-Order Functions

Example

The foldr function (on lists) reduces a list using a binary operator from right to left, i.e.

```
foldr f z [x1, x2, ..., xn] ==
    x1 'f` (x2 'f` ... (xn 'f` z)...)
```

The foldr function on lists can be defined by

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x : xs) = f x (foldr f z xs)
```

See file fp/HigherOrder.hs.

Higher-Order Functions

Example

The foldl function (on lists) reduces a list using a binary operator from left to right, i.e.

```
foldl f z [x1, x2, ..., xn] ==
    (...((z 'f` x1) 'f` x2) 'f`...) ‘f` xn
```

The foldl function on lists can be defined by

```
foldl :: (a -> b -> b) -> b -> [a] -> b
foldl f z [] = z
foldl f z (x : xs) = foldl f (f z x) xs
```


Higher-Order Functions

Example

The filter function returns those elements of a list that satisfy a predicate (i.e., a function a -> Bool).

The filter function is defined in the base library by

```
filter :: (a -> Bool) -> [a] -> [a]
filter _ [] = []
filter p (x : xs)
    | p x = x : filter p xs
    otherwise = filter p xs
```


Type Classes

Example

Does the element occur in the list?

```
elem :: a -> [a] -> Bool
elem x [] = False
elem x (y : ys) = x == y || elem x ys
```


Type Classes

Example

Does the element occur in the list?

```
elem :: a -> [a] -> Bool
elem x [] = False
elem x (y : ys) = x == y || elem x ys
```

The above code generates the following error:

```
error: No instance for (Eq a) arising from a use of '=='
```


Type Classes

Example (continuation)

We can fix the error by adding the type constraint Eq a which restricts the type a to instances of the type class Eq.

```
elem :: Eq a => a -> [a] -> Bool
elem x [] = False
elem x (y : ys) = x == y || elem x ys
```


Type Classes

Description
Type classes provide a structured way to control ad hoc polymorphism, or overloading.
Example
The type class Eq is defined by
class Eq a where
(==) :: a -> a -> Bool

Type Classes

Example

The data types Bool and Nat are instances of the type class Eq.

```
instance Eq Bool where
    True == True = True
    False == False = True
        == _ False
```

instance Eq Nat where

$$
\begin{array}{lll}
\text { Zero } & ==\text { Zero } & =\text { True } \\
\text { Zero } & ==(\text { Succ _) } & =\text { False } \\
(\text { Succ _) } & ==\text { Zero } & =\text { False } \\
\text { (Succ } m) & ==(\text { Succ } n) & =m==n
\end{array}
$$

Type Classes

Example

```
data Day = Mon | Tue | Wed | Thu | Fri | Sat | Sun
GHCi> elem Mon [Tue, Sat, Sun]
error: No instance for (Eq Day) arising from a use of '==’
```


Type Classes

Example (continuation)
A solution: Adding the missing instance

$$
\begin{aligned}
& \text { instance Eq Day where } \\
& \text { Mon }==\text { Mon }=\text { True } \\
& \text { Tue }=\text { Tue }=\text { True } \\
& \text { Wed }==\text { Wed }=\text { True } \\
& \text { Thu }=\text { Thu }=\text { True } \\
& \text { Fri }=\text { Fri }=\text { True } \\
& \text { Sat }=\text { Sat }=\text { True } \\
& \text { Sun }=\text { Sun } \\
&=\text { True } \\
&=\text { False }
\end{aligned}
$$

Type Classes

Example (continuation)

A solution: Using the deriving mechanism

```
data Day = Mon | Tue | Wed | Thu | Fri | Sat | Sun
    deriving Eq
```


Continuation Passing Style

Description

'Continuation Passing Style (or CPS) is a way of writing functional programs where control is made explicit. In other words, the continuation represents the remaining work to be done.' (p. 212)

Continuation Passing Style

Description

'Continuation Passing Style (or CPS) is a way of writing functional programs where control is made explicit. In other words, the continuation represents the remaining work to be done.' (p. 212)

Example

See file fp/CPS.hs.

Input and Output

The problem
How can programs with input and output be modelled as pure functions?

Input and Output

The problem
How can programs with input and output be modelled as pure functions?

The solution

There are various approaches for using pure functions and side-effects (see, e.g. [Peyton Jones and Wadler 1993]). Haskell's solution is via monads.

Input and Output

The unit type
The unit type is a type with only one element. Haskell unity type and its element are

```
() :: ()
```

The unit type is useful when performing input-output.

Input and Output

The IO type
The following description of the type I0 is from [Hutton 2016, § 10.2].

Input and Output

The IO type
The following description of the type I0 is from [Hutton 2016, § 10.2].
A program with input-output can be represented by a function
World -> World
type 10 = World -> World

Input and Output

The IO type
The following description of the type I0 is from [Hutton 2016, § 10.2].
A program with input-output can be represented by a function
World -> World
type 10 = World -> World
What about if the program returns a value?

```
type IO a = World -> (a, World)
```

(continued on next slide)

Input and Output

The IO type (continuation)
What about if the program requires an argument?
For example, a program requiring a character and returning an integer has the type

```
Char -> IO Int
Char -> World -> (Int, World)
```


Input and Output

The IO type (continuation)
What about if the program requires an argument?
For example, a program requiring a character and returning an integer has the type

```
Char -> IO Int
Char -> World -> (Int, World)
```

The compiler has the responsibility of handling the state of world. The type IO a is primitive in Haskell.

Input and Output

Definition

An action is an expression of type IO a. When the expression is evaluated the action is performed.

Input and Output

Definition

An action is an expression of type IO a. When the expression is evaluated the action is performed.

Example

- t : IO Char is the action that returns a character.
- t : IO () is the action that no returns a value, where () is a dummy result value.

Input and Output

The abstract datatype IO a
The abstract datatype IO a has (at least) the following operations [Bird 1998, § 10.1]:

```
return :: a -> IO a
(>>=) :: IO a -> (a -> IO b) -> IO b
putChar :: Char -> IO ()
getChar :: IO Char
```


Input and Output

Example

See file fp/IO.hs.

Testing via QuickCheck

A paper
Claessen, Koen and Hughes, John [2000]. QuickCheck: A Lightweight Tool for Random Testing of Haskell Programs. ICFP'00. DOI: https://doi.org/10.1145/357766. 351266.

[^1]
Testing via QuickCheck

A paper
Claessen, Koen and Hughes, John [2000]. QuickCheck: A Lightweight Tool for Random Testing of Haskell Programs. ICFP'00. DOI: https://doi.org/10.1145/357766. 351266.

Most Influential ICFP Paper Award 2010*
'The techniques described in the paper have spawned a significant body of follow-on work in test case generation. They have also been adapted to other languages ...'

[^2]
Testing via QuickCheck

An open source library
QuickCheck on Hackage.*

[^3]
Testing via QuickCheck

An open source library
 QuickCheck on Hackage.*

Commercialisation
QuviQ (www.quviq.com/).

[^4]
Testing via QuickCheck

Adaptations
QuickCheck has been ported to various languages (Wikipedia 2023-10-17).

C	C\#	C++	Chicken	Clojure
Common Lisp	Coq	D	Elm	Elixir
Erlang	F\#	Factor	Go	lo
Java	JavaScript	Julia	Logtalk	Lua
Mathematica	Objective-C	OCaml	Perl	Prolog
PHP	Pony	Python	R	Racket
Ruby	Rust	Scala	Scheme	Smalltalk
Standard ML	Swift	TypeScript	Visual Basic .NET	Vhiley

Testing via QuickCheck

False positive

The program works properly but the test pointed out a fail:

- There is a bug elsewhere.
- There is an error in the specification.

Testing via QuickCheck

False positive

The program works properly but the test pointed out a fail:

- There is a bug elsewhere.
- There is an error in the specification.

False negative
There is a bug in the program but the test passed.
Recall Dijkstra's 1969 famous quote:
'Testing shows the presence, not the absence of bugs.' (Buxton and Randell 1970)

Testing via QuickCheck

QuickCheck demo

References

Barendregt, H. P. [1981] (2004). The Lambda Calculus. Its Syntax and Semantics. Revised edition, 6th impression. Vol. 103. Studies in Logic and the Foundations of Mathematics. Elsevier (cit. on p. 16).

Bird, Richard [1988] (1998). Introduction to Functional Programming. 2nd ed. Prentice Hall Press (cit. on p. 111).
Buxton, J. N. and Randell, B., eds. (1970). Software Engineering Techniques (NATO Software Engineering Conference 1969). (Cit. on pp. 118, 119).
Church, Alonzo (1932). A Set of Postulates for the Foundation of Logic. Annals of Mathematics 33.2, pp. 346-366. DOI: 10.2307/1968337 (cit. on pp. 8-10).

- (1935). An Unsolvable Problem of Elementary Number Theory. Preliminar Report (Abstract). Bulletin of the American Mathematical Society 41.5, pp. 332-333. DoI: 10.1090/S0002-9904-1935-06102-6 (cit. on p. 23).
- (1936). An Unsolvable Problem of Elementary Number Theory. American Journal of Mathematics 58.2 , pp. 345-363. DOI: 10.2307/2371045 (cit. on p. 23).

References

Hindley，J．Roger and Seldin，Jonathan P．（2008）．Lambda－Calculus and Combinators．An Introduc－ tion．Cambridge University Press（cit．on p．16）．
Hudak，Paul，Hughes，John，Peyton Jones，Simon and Wadler，Philip（2007）．A History of Haskell： Being Lazy with Class．In：Proceedings of the third ACM SIGPLAN conference on History of programming languages．HOPL III，12：1－12：55．DOI：10．1145／1238844． 1238856 （cit．on p．24）．
Hudak，Paul，Peterson，John and Fasel，Joseph H．（1999）．A Gentle Introduction to Haskell 98. URL：https：／／www．haskell．org／tutorial／（cit．on pp．71－73）．
圊 Hughes，J．（1989）．Why Functional Programming Matters．The Computer Journal 32．2，pp．98－107． DOI： $10.1093 /$ comjnl／32．2．98（cit．on pp．27，28）．
Hutton，Graham［2007］（2016）．Programming in Haskell．2nd ed．Cambridge University Press（cit．on pp．4－6，104－106）．
Lee，Kent D．［2014］（2017）．Foundations of Programming Languages．2nd ed．Undergraduate Topics in Computer Science．Springer（cit．on p．2）．
O＇Sullivan，Bryan，Goerzen，John and Stewart，Don（2008）．Real World Haskell．O＇Really Media， Inc．（cit．on pp．4－6）．

References

Peyton Jones, Simon L. and Wadler, Philip (1993). Imperative Functional Programming. In: Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 1993), pp. 71-84. DOI: 10.1145/158511. 158524 (cit. on pp. 101, 102).

[^0]: *See, e.g. [Barendregt 2004; Hindley and Seldin 2008].

[^1]: *See www.sigplan.org/Awards/ICFP/.

[^2]: *See www.sigplan.org/Awards/ICFP/.

[^3]: *http://hackage.haskell.org/package/QuickCheck.

[^4]: *http://hackage.haskell.org/package/QuickCheck.

