
ST0244 Programming Languages
5. Functional Programming

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2023-2

Preliminaries
Conventions

The number and page numbers assigned to chapters, examples, exercises, figures, quotes,
sections and theorems on these slides correspond to the numbers assigned in the textbook [Lee
2017].

The source code examples are in course’s repository.

Preliminaries 2/123

Introduction

Feature Imperative Functional
Assignment of variables Yes No
Iteration Yes No
Recursion Possible Necessary
Higher-order functions Possible Yes
First-class functions No Yes
Side-effects Yes Avoid or isolate
Theoretical model Turing machine Lambda calculus
Program execution Execution of statements Evaluation of expressions

Introduction 3/123

Introduction
Description

‘A side effect introduces a dependency between the global state of the system and
the behaviour of a function... Side effects are essentially invisible inputs to, or outputs
from, functions.’ (O’Sullivan, Goerzen and Stewart 2008, p. 27)

Description
A pure function is a side-effect free function (e.g. does not cause mutation of mutable objects
nor output to I/O devices). That is, pure functions

‘take all their input as explicit arguments, and produce all their output as explicit
results.’ (Hutton 2016, § 10.1)

Example (C++ and Pascal)
See files fp/side-effect*.

Introduction 4/123

Introduction
Description

‘A side effect introduces a dependency between the global state of the system and
the behaviour of a function... Side effects are essentially invisible inputs to, or outputs
from, functions.’ (O’Sullivan, Goerzen and Stewart 2008, p. 27)

Description
A pure function is a side-effect free function (e.g. does not cause mutation of mutable objects
nor output to I/O devices). That is, pure functions

‘take all their input as explicit arguments, and produce all their output as explicit
results.’ (Hutton 2016, § 10.1)

Example (C++ and Pascal)
See files fp/side-effect*.

Introduction 5/123

Introduction
Description

‘A side effect introduces a dependency between the global state of the system and
the behaviour of a function... Side effects are essentially invisible inputs to, or outputs
from, functions.’ (O’Sullivan, Goerzen and Stewart 2008, p. 27)

Description
A pure function is a side-effect free function (e.g. does not cause mutation of mutable objects
nor output to I/O devices). That is, pure functions

‘take all their input as explicit arguments, and produce all their output as explicit
results.’ (Hutton 2016, § 10.1)

Example (C++ and Pascal)
See files fp/side-effect*.

Introduction 6/123

Lambda Calculus
Introduction

A formal system invented by Alonzo Church around 1930s.

The goal was to use the λ-calculus in the foundation of mathematics.

Intended for studying functions and recursion.

Computability model.

A free-type functional programming language.

λ-notation (e.g. anonymous functions and currying).

Lambda Calculus 7/123

Lambda Calculus
Application
Application of the function M to argument N is denoted by MN (juxtaposition).

Abstraction
‘If M is any formula containing the variable x, then λx[M] is a symbol for the function
whose values are those given by the formula.’ (Church 1932, p. 352)

Lambda Calculus 8/123

Lambda Calculus
Application
Application of the function M to argument N is denoted by MN (juxtaposition).

Abstraction
‘If M is any formula containing the variable x, then λx[M] is a symbol for the function
whose values are those given by the formula.’ (Church 1932, p. 352)

Lambda Calculus 9/123

Lambda Calculus
Currying

‘Adopting a device due to Schönfinkel, we treat a function of two variables as a function
of one variable whose values are functions of one variable, and a function of three or
more variables similarly.’ (Church 1932, p. 352)

Such device is called currying after Haskell Curry.

(continued on next slide)

Lambda Calculus 10/123

Lambda Calculus
Currying (continuation)
Let g : X × Y → Z be a function of two variables. We can define two functions fx and f :

fx : Y → Z f : X → (Y → Z)
fx = λy.g(x, y), f = λx.fx.

Then (f x) y = fx y = g(x, y). That is, the function of two variables

g : X × Y → Z

is represented as the higher-order function

f : X → (Y → Z).

Lambda Calculus 11/123

Lambda Calculus
Definition
The set of λ-terms is described by

M, N ::= x (variable)
| (λx.M) (λ-abstraction)
| (MN) (application)

Conventions
λ-term variables will be denoted by x, y, z,
λ-terms will be denoted by M, N,

Example
Whiteboard.

Lambda Calculus 12/123

Lambda Calculus
Definition
The set of λ-terms is described by

M, N ::= x (variable)
| (λx.M) (λ-abstraction)
| (MN) (application)

Conventions
λ-term variables will be denoted by x, y, z,
λ-terms will be denoted by M, N,

Example
Whiteboard.

Lambda Calculus 13/123

Lambda Calculus
Definition
The set of λ-terms is described by

M, N ::= x (variable)
| (λx.M) (λ-abstraction)
| (MN) (application)

Conventions
λ-term variables will be denoted by x, y, z,
λ-terms will be denoted by M, N,

Example
Whiteboard.

Lambda Calculus 14/123

Lambda Calculus
Conventions and syntactic sugar

Outermost parentheses are not written.
Application has higher precedence, that is,

λx.MN := (λx.(MN)).

Application associates to the left, that is,

MN1N2 . . . Nk := (. . . ((MN1)N2) . . . Nk).

Lambda abstraction associates to the right, that is,

λx1x2 . . . xn.M := λx1.λx2. . . . λxn.M

:= (λx1.(λx2.(. . . (λxn.M) . . .))).

Lambda Calculus 15/123

Lambda Calculus
Definition
The functional behaviour of the λ-calculus is formalised through of their reduction/conversion
rules. The β-reduction rule is defined by

(λx.M)N ⇒ M [x 7→ N],

where M [x 7→ N] denotes the result of substituting N for every free occurrence of x
in M .∗

Example
Whiteboard.

∗See, e.g. [Barendregt 2004; Hindley and Seldin 2008].
Lambda Calculus 16/123

Lambda Calculus
Definition
A redex is a λ-term of the form (λx.M)N .

Definition
A λ-term which contains no redex is in normal form.

Lambda Calculus 17/123

Lambda Calculus
Definition
A redex is an outermost redex iff it is not contained in any other redex.

A redex is an innermost redex iff it contains no other redex.

Example
Let M := (λy.z)((λx.xx)(λx.xx)). Then

M is an outermost redex.

M is not an innermost redex because it contains a redex.

(λx.xx)(λx.xx) is an innermost redex.

(λx.xx)(λx.xx) is not an outermost redex because it is contained in a redex.

Lambda Calculus 18/123

Lambda Calculus
Definition
The normal order reduction is the evaluation strategy where the left-most outermost redex is
reduced first.

Definition
The applicative order reduction is the evaluation strategy where the left-most innermost redex
is reduced first.

Lambda Calculus 19/123

Lambda Calculus
Definition
The normal order reduction is the evaluation strategy where the left-most outermost redex is
reduced first.

Definition
The applicative order reduction is the evaluation strategy where the left-most innermost redex
is reduced first.

Lambda Calculus 20/123

Lambda Calculus
Example
To reduce (λxyz.xz(yz))(λx.x)(λxy.x) using both normal order reduction and applicative order
reduction.

Normal order reduction

(λxyz.xz(yz))(λx.x)(λxy.x)
⇒ (λyz.(λx.x)z(yz))(λxy.x)
⇒ λz.(λx.x)z((λxy.x)z)
⇒ λz.z((λxy.x)z)
⇒ λz.z(λy.z)

Applicative order reduction

(λxyz.xz(yz))(λx.x)(λxy.x)
⇒ (λyz.(λx.x)z(yz))(λxy.x)
⇒ (λyz.z(yz))(λxy.x)
⇒ λz.z((λxy.x)z)
⇒ λz.z(λy.z)

Lambda Calculus 21/123

Lambda Calculus
Example
Let Ω := (λx.xx)(λx.xx). To reduce (λy.z)Ω using both normal order reduction and applicative
order reduction.

Normal order reduction

(λy.z)Ω
⇒ z

Applicative order reduction

(λy.z)Ω
= (λy.z)((λx.xx)(λx.xx))
⇒ (λy.z)((λx.xx)(λx.xx))
⇒ (λy.z)((λx.xx)(λx.xx))
⇒ . . .

Lambda Calculus 22/123

Lambda Calculus
Remark
Church [1935, 1936] proved that the set

{ M ∈ λ-terms | M has a normal form }

is undecidable. This was the first undecidable set ever.

Lambda Calculus 23/123

Getting Started with Haskell
Introduction
Haskell is a functional language based on various functional languages which in turn are based
on the λ-calculus. For a very complete history of this language see [Hudak, John Hughes,
Peyton Jones and Wadler 2007].

Getting Started with Haskell 24/123

Getting Started with Haskell
Important Haskell features∗

Haskell is a pure and lazy functional programming language.

Haskell is higher-order supporting functions as first-class values.

It is strongly typed like Pascal, but more powerful since it supports polymorphic type
checking.

Remark on the sentence:
‘With this strong type checking it is pretty infrequent that you need to debug your
code!! What a great thing!!!’ (p. 184)

(continued on next slide)
∗Almost copy-paste from Section “5.3 Getting Started with Standard ML” in the textbook.

Getting Started with Haskell 25/123

Getting Started with Haskell
Important Haskell features (continuation)

It provides a safe environment for code development and execution. This means there are
no traditional pointers in Haskell.

Since there are no traditional pointers, garbage collection is implemented in the Haskell
system.

Pattern-matching is provided for conveniently writing recursive functions.

Lists are a built-in data type.

A library of commonly used functions and data structures is available called the Base Library.

Getting Started with Haskell 26/123

Getting Started with Haskell
Suggested reading
J. Hughes [1989, p. 107] wrote:

‘In this paper, we have argued that modularity is the key to successful programming
[...] Functional programming languages provide two new kinds of glue—higher-order
functions and lazy evaluation. Using these glues one can modularise programs in new
and exciting ways [...] Smaller and more general modules can be re-used more widely,
easing subsequent programming. This explains why functional programs are so much
smaller and easier to write than conventional ones.’

Remark
The above paper was written in 1984 and it circulated as a memo. The paper did not use Haskell
but Miranda, a predecessor of Haskell.

Getting Started with Haskell 27/123

Getting Started with Haskell
Suggested reading
J. Hughes [1989, p. 107] wrote:

‘In this paper, we have argued that modularity is the key to successful programming
[...] Functional programming languages provide two new kinds of glue—higher-order
functions and lazy evaluation. Using these glues one can modularise programs in new
and exciting ways [...] Smaller and more general modules can be re-used more widely,
easing subsequent programming. This explains why functional programs are so much
smaller and easier to write than conventional ones.’

Remark
The above paper was written in 1984 and it circulated as a memo. The paper did not use Haskell
but Miranda, a predecessor of Haskell.

Getting Started with Haskell 28/123

Expressions, Types, Functions and Guards
Example

factorial 0 = 1
factorial n = n * factorial (n - 1)

Question
Is the factorial function correct?

factorial :: Int -> Int
factorial 0 = 1
factorial n = n * factorial (n - 1)

From the type of the function we know the function is buggy. Why?

Expressions, Types, Functions and Guards 29/123

Expressions, Types, Functions and Guards
Example

factorial 0 = 1
factorial n = n * factorial (n - 1)

Question
Is the factorial function correct?

factorial :: Int -> Int
factorial 0 = 1
factorial n = n * factorial (n - 1)

From the type of the function we know the function is buggy. Why?

Expressions, Types, Functions and Guards 30/123

Expressions, Types, Functions and Guards
Example

factorial 0 = 1
factorial n = n * factorial (n - 1)

Question
Is the factorial function correct?

factorial :: Int -> Int
factorial 0 = 1
factorial n = n * factorial (n - 1)

From the type of the function we know the function is buggy. Why?

Expressions, Types, Functions and Guards 31/123

Expressions, Types, Functions and Guards
Example

factorial 0 = 1
factorial n = n * factorial (n - 1)

Question
Is the factorial function correct?

factorial :: Int -> Int
factorial 0 = 1
factorial n = n * factorial (n - 1)

From the type of the function we know the function is buggy. Why?

Expressions, Types, Functions and Guards 32/123

Expressions, Types, Functions and Guards
Example
One solution for the buggy factorial function using guards.

factorial :: Int -> Int
factorial n
| n == 0 = 1
| n > 0 = n * factorial (n - 1)
| otherwise = error "factorial: n < 0"

Other solutions (humor)
Google for ‘The evolution of a Haskell programmer’.

Expressions, Types, Functions and Guards 33/123

Expressions, Types, Functions and Guards
Example
One solution for the buggy factorial function using guards.

factorial :: Int -> Int
factorial n
| n == 0 = 1
| n > 0 = n * factorial (n - 1)
| otherwise = error "factorial: n < 0"

Other solutions (humor)
Google for ‘The evolution of a Haskell programmer’.

Expressions, Types, Functions and Guards 34/123

Currying
Functions for currying and uncurrying
(i) Converts an uncurried function to a curried function.

curry :: ((a, b) -> c) -> a -> b -> c

(ii) Converts a curried function to a function on pairs.

uncurry :: (a -> b -> c) -> (a, b) -> c

Expressions, Types, Functions and Guards 35/123

Lists
Inductive definition
Haskell has built-in syntax for lists, where a list is either:

the empty list, written [], or
a first element x and a list xs, written (x : xs).

The operator ‘:‘ is usually called cons.

Lists 36/123

Lists
Example (recursive function using pattern matching on lists)
Returns the length of a finite list of Int’s as an Int.

lengthInt :: [Int] -> Int
lengthInt [] = 0
lengthInt (x : xs) = 1 + lengthInt xs

Question
What about the length function on lists of Booleans?

Returns the length of a finite list of Bools’s as an Int.

lengthBool :: [Bool] -> Int
lengthBool [] = 0
lengthBool (x : xs) = 1 + lengthBool xs

Lists 37/123

Lists
Example (recursive function using pattern matching on lists)
Returns the length of a finite list of Int’s as an Int.

lengthInt :: [Int] -> Int
lengthInt [] = 0
lengthInt (x : xs) = 1 + lengthInt xs

Question
What about the length function on lists of Booleans?

Returns the length of a finite list of Bools’s as an Int.

lengthBool :: [Bool] -> Int
lengthBool [] = 0
lengthBool (x : xs) = 1 + lengthBool xs

Lists 38/123

Lists
Example (recursive function using pattern matching on lists)
Returns the length of a finite list of Int’s as an Int.

lengthInt :: [Int] -> Int
lengthInt [] = 0
lengthInt (x : xs) = 1 + lengthInt xs

Question
What about the length function on lists of Booleans?

Returns the length of a finite list of Bools’s as an Int.

lengthBool :: [Bool] -> Int
lengthBool [] = 0
lengthBool (x : xs) = 1 + lengthBool xs

Lists 39/123

Lists
Question
Can we avoid the boilerplate code? Yes!

Lists 40/123

Parametric Polymorphism
Lists
The built-in lists are parametric polymorphics.

GHCi> :t []
[] :: [a]

GHCi> :t (:)
(:) :: a -> [a] -> [a]

Parametric Polymorphism 41/123

Parametric Polymorphism
Example
Returns the length of a finite list (of any type) as an Int.

length :: [a] -> Int
length [] = 0
length (x : xs) = 1 + length xs

Parametric Polymorphism 42/123

Parametric Polymorphism
Example
Appends two lists.

(++) :: [a] -> [a] -> [a]
(++) [] ys = ys
(++) (x : xs) ys = x : xs ++ ys

Parametric Polymorphism 43/123

Parametric Polymorphism
Example (functions from the basic library)

Extracts the first element of a list, which must be non-empty.

head :: [a] -> a

Extracts the last element of a list, which must be finite and non-empty.

last :: [a] -> a

Extracts the elements after the head of a list, which must be non-empty.

tail :: [a] -> [a]

Parametric Polymorphism 44/123

Parametric Polymorphism
Example (functions from the basic library)

Returns all the elements of a list except the last one. The list must be non-empty.

init :: [a] -> [a]

Tests whether a list is empty.

null :: [a] -> Bool

Parametric Polymorphism 45/123

Recursion
Definition
A function is recursive iff it calls itself.

Recursion 46/123

Recursion
Writing recursive functions (p. 188)

1. ‘Decide what the function is named, what arguments are passed to it, and what the function
should return.’

2. ‘At least one of the arguments must get smaller each time. Most of the time it is only one
argument getting smaller. Decide which one that will be.’

3. ‘Write the function declaration, declaring the name, arguments types, and return type if
necessary.’

4. ‘Write a base case for the argument that you decided will get smaller. Pick the smallest,
simplest value that could be passed to the function and just return the result for that base
case.’

5. ‘The next step is the crucial step. You don’t write the next statement from left to right.
You write from the inside out at this point.’

(continued on next slide)

Recursion 47/123

Recursion
Writing recursive functions (p. 188) (continuation)

6. ‘Make a recursive call to the function with a smaller value. For instance, if it is a list
you decided will get smaller, call the function with the tail of the list. If an integer is the
argument getting smaller, call the function with the integer argument minus 1. Call the
function with the required arguments and in particular with a smaller value for the argument
you decided would get smaller at each step.’

7. ‘Now, here’s a leap of faith. That call you made in the last step worked! It returned the
result that you expected for the arguments it was given. Use that result in building the
result for the original arguments passed to the function. At this step it may be helpful to try
a concrete example. Assume the recursive call worked on the concrete example. What do
you have to do with that result to get the result you wanted for the initial call? Write code
that uses the result in building the final result for your concrete example. By considering a
concrete example it will help you see what computation is required to get your final result.’

8. ‘That’s it! Your function is complete and it will work if you stuck to these guidelines.’

Recursion 48/123

Recursion
Example
The previous functions are recursive functions.

factorial :: Int -> Int
length :: [a] -> Int
(++) :: [a] -> [a] -> [a]
last :: [a] -> a
init :: [a] -> [a]
null :: [a] -> Bool

Recursion 49/123

Characters and Strings

In Haskell the type of characters is Char and the type String is a type synonymous of [Char].
That is, a string is a list of characters.

Example

’a’ -- Character.
’a’ : ’b’ : ’c’ : [] -- List of characters.
[’a’,’b’,’c’] -- List of characters.
"abc" -- String.

-- List of strings.
["hello","how"] ++ ["are","you?"]

Characters and Strings 50/123

Characters and Strings

In Haskell the type of characters is Char and the type String is a type synonymous of [Char].
That is, a string is a list of characters.

Example

’a’ -- Character.
’a’ : ’b’ : ’c’ : [] -- List of characters.
[’a’,’b’,’c’] -- List of characters.
"abc" -- String.

-- List of strings.
["hello","how"] ++ ["are","you?"]

Characters and Strings 51/123

Lazy Evaluation

Nothing is evaluated until necessary.

Example (also in other programming languages)

-- Boolean disjunction.
(||) :: Bool -> Bool -> Bool

Lazy Evaluation 52/123

Lazy Evaluation

Nothing is evaluated until necessary.

Example (also in other programming languages)

-- Boolean disjunction.
(||) :: Bool -> Bool -> Bool

Lazy Evaluation 53/123

Lazy Evaluation
Example

foo :: Int -> Bool -- Non-terminating function.
foo n = foo (n + 1)

bar :: Int -> Bool
bar n = True || foo n

Question
Which is the value of bar 10?

GHCi> bar 10
True

Lazy Evaluation 54/123

Lazy Evaluation
Example

foo :: Int -> Bool -- Non-terminating function.
foo n = foo (n + 1)

bar :: Int -> Bool
bar n = True || foo n

Question
Which is the value of bar 10?

GHCi> bar 10
True

Lazy Evaluation 55/123

Lazy Evaluation
Example

foo :: Int -> Bool -- Non-terminating function.
foo n = foo (n + 1)

bar :: Int -> Bool
bar n = True || foo n

Question
Which is the value of bar 10?

GHCi> bar 10
True

Lazy Evaluation 56/123

Lazy Evaluation

Example (from http://stackoverflow.com/questions/30688558/)

dh :: Int -> Int -> (Int, Int)
dh d q = (2^d, q^d)

a :: (Int, Int)
a = dh 2 (fst b)

b :: (Int, Int)
b = dh 3 (fst a)

Question
Which is the value of a?

GHCi> a
(4,64)

Lazy Evaluation 57/123

http://stackoverflow.com/questions/30688558/

Lazy Evaluation

Example (from http://stackoverflow.com/questions/30688558/)

dh :: Int -> Int -> (Int, Int)
dh d q = (2^d, q^d)

a :: (Int, Int)
a = dh 2 (fst b)

b :: (Int, Int)
b = dh 3 (fst a)

Question
Which is the value of a?

GHCi> a
(4,64)

Lazy Evaluation 58/123

http://stackoverflow.com/questions/30688558/

Lazy Evaluation

Example (from http://stackoverflow.com/questions/30688558/)

dh :: Int -> Int -> (Int, Int)
dh d q = (2^d, q^d)

a :: (Int, Int)
a = dh 2 (fst b)

b :: (Int, Int)
b = dh 3 (fst a)

Question
Which is the value of a?

GHCi> a
(4,64)

Lazy Evaluation 59/123

http://stackoverflow.com/questions/30688558/

Lazy Evaluation
Example
The expression take n, applied to a list xs, returns the prefix of xs of length n, or xs itself if
n > length xs.

take :: Int -> [a] -> [a]

Unbounded list.

ones :: [Int]
ones = 1 : ones

Question
Which is the value of take 5 ones?

GHCi> take 5 ones
[1,1,1,1,1]

Lazy Evaluation 60/123

Lazy Evaluation
Example
The expression take n, applied to a list xs, returns the prefix of xs of length n, or xs itself if
n > length xs.

take :: Int -> [a] -> [a]

Unbounded list.

ones :: [Int]
ones = 1 : ones

Question
Which is the value of take 5 ones?

GHCi> take 5 ones
[1,1,1,1,1]

Lazy Evaluation 61/123

Lazy Evaluation
Example
The expression take n, applied to a list xs, returns the prefix of xs of length n, or xs itself if
n > length xs.

take :: Int -> [a] -> [a]

Unbounded list.

ones :: [Int]
ones = 1 : ones

Question
Which is the value of take 5 ones?

GHCi> take 5 ones
[1,1,1,1,1]

Lazy Evaluation 62/123

Algebraic Data Types and Pattern Matching
Example

data Bool = True | False

True and False are the (data) constructors for the data type Bool.

Example (function by pattern matching)

(||) :: Bool -> Bool -> Bool
True || _ = True
False || x = x

Algebraic Data Types and Pattern Matching 63/123

Algebraic Data Types and Pattern Matching
Example

data Bool = True | False

True and False are the (data) constructors for the data type Bool.

Example (function by pattern matching)

(||) :: Bool -> Bool -> Bool
True || _ = True
False || x = x

Algebraic Data Types and Pattern Matching 64/123

Algebraic Data Types and Pattern Matching
Example

data Day = Mon | Tue | Wed | Thu | Fri | Sat | Sun

Function by pattern matching.

nextDay :: Day -> Day
nextDay Mon = Tue
nextDay Tue = Wed
nextDay Wed = Thu
nextDay Thu = Fri
nextDay Fri = Sat
nextDay Sat = Sun
nextDay Sun = Mon

Algebraic Data Types and Pattern Matching 65/123

Algebraic Data Types and Pattern Matching
Example (recursive data type)

data Nat = Zero | Succ Nat

Example (structural recursive function by pattern matching)

(+) :: Nat -> Nat -> Nat
Zero + n = n
(Succ m) + n = Succ (m + n)

Algebraic Data Types and Pattern Matching 66/123

Algebraic Data Types and Pattern Matching
Example (recursive data type)

data Nat = Zero | Succ Nat

Example (structural recursive function by pattern matching)

(+) :: Nat -> Nat -> Nat
Zero + n = n
(Succ m) + n = Succ (m + n)

Algebraic Data Types and Pattern Matching 67/123

Algebraic Data Types and Pattern Matching
Example (polymorphic data type)

data List a = Nil | Cons a (List a)

-- The built-in lists.
data [] a = [] | a : [a]

Algebraic Data Types and Pattern Matching 68/123

Algebraic Data Types and Pattern Matching
Example (polymorphic data type)

data List a = Nil | Cons a (List a)

-- The built-in lists.
data [] a = [] | a : [a]

Algebraic Data Types and Pattern Matching 69/123

Tuples
Example
See file fp/Tuples.hs.

Tuples 70/123

Let Expressions and Where Clauses
Example
See file fp/LetWhere.hs.

Example
From [Hudak, Peterson and Fasel 1999].

let y = a * b
f x = (x + y)/y

in f c + f d

The bindings created by a let expression are mutually recursive.

The declarations permitted in let expressions include type signatures and function bindings.

Let Expressions and Where Clauses 71/123

Let Expressions and Where Clauses
Example
See file fp/LetWhere.hs.

Example
From [Hudak, Peterson and Fasel 1999].

let y = a * b
f x = (x + y)/y

in f c + f d

The bindings created by a let expression are mutually recursive.

The declarations permitted in let expressions include type signatures and function bindings.

Let Expressions and Where Clauses 72/123

Let Expressions and Where Clauses
Example
From [Hudak, Peterson and Fasel 1999].

f x y | y > z = ...
| y == z = ...
| y < z = ...

where z = x * x

A where clause is part of the syntax of function declarations.

In this case, we cannot replace the where clause by a let expression.

Let Expressions and Where Clauses 73/123

Efficiency of Recursion

Example (Fibonnaci function)
Very inefficient version.

fib :: Natural -> Natural
fib 0 = 0
fib 1 = 1
fib n = fib (n - 1) +

fib (n - 2)

The number of calls to fib grows
exponentially with the size of n.

fib 4: 9 calls
fib 5: 15 calls
fib 6: 15 + 9 calls

Fig. 5.16.

(continued on next slide)Efficiency of Recursion 74/123

Efficiency of Recursion
Example (continuation)
Accumulator pattern version.

fibAP :: Natural -> Natural
fibAP n =
let fibH :: Natural -> Natural -> Natural -> Natural

fibH count current previous =
if count == n then previous
else fibH (count + 1) (current + previous) current

in fibH 0 1 0

(continued on next slide)

Efficiency of Recursion 75/123

Efficiency of Recursion
Example (continuation)

fibAP 5 = fibH 0 1 0
= fibH 1 1 1
= fibH 2 2 1
= fibH 3 3 2
= fibH 4 5 3
= fibH 5 8 5
= 5

fib(0) = 0,

fib(1) = 1,

fib(2) = 1,

fib(3) = 2,

fib(4) = 3,

fib(5) = 5.

(continued on next slide)

Efficiency of Recursion 76/123

Efficiency of Recursion
Example (continuation)
Time running fib 42 (file fp/Fibonacci.hs).

$ time ./fibonacci
real 1m4.353s
user 1m4.160s
sys 0m0.192s

Time running fibAP 42 (file fp/Fibonacci.hs).

$ time ./fibonacci
real 0m0.006s
user 0m0.001s
sys 0m0.005s

Efficiency of Recursion 77/123

Efficiency of Recursion
Example
Reverse of a list using append.

reverse :: [a] -> [a]
reverse [] = []
reverse (x : xs) = reverse xs ++ [x]

Reverse of a list using the accumulator pattern.

reverse :: [a] -> [a]
reverse xs = rev xs []
where
rev [] zs = zs
rev (y : ys) zs = rev ys (y : zs)

See file fp/Reverse.hs.

Efficiency of Recursion 78/123

Efficiency of Recursion
Example
Reverse of a list using append.

reverse :: [a] -> [a]
reverse [] = []
reverse (x : xs) = reverse xs ++ [x]

Reverse of a list using the accumulator pattern.

reverse :: [a] -> [a]
reverse xs = rev xs []
where
rev [] zs = zs
rev (y : ys) zs = rev ys (y : zs)

See file fp/Reverse.hs.

Efficiency of Recursion 79/123

Tail Recursion
Problem
Recursive function calls takes longer than executing a simple loop.

Solution
Tail recursion optimisation: Implement tail recursive functions using jump or branching instruc-
tions.

Definition
‘A tail recursive function is a function where the very last operation of the function
is the recursive call to itself.’ (p. 203)

Example (Factorial function)
See directory fp/factorial.

Tail Recursion 80/123

Tail Recursion
Problem
Recursive function calls takes longer than executing a simple loop.

Solution
Tail recursion optimisation: Implement tail recursive functions using jump or branching instruc-
tions.

Definition
‘A tail recursive function is a function where the very last operation of the function
is the recursive call to itself.’ (p. 203)

Example (Factorial function)
See directory fp/factorial.

Tail Recursion 81/123

Tail Recursion
Problem
Recursive function calls takes longer than executing a simple loop.

Solution
Tail recursion optimisation: Implement tail recursive functions using jump or branching instruc-
tions.

Definition
‘A tail recursive function is a function where the very last operation of the function
is the recursive call to itself.’ (p. 203)

Example (Factorial function)
See directory fp/factorial.

Tail Recursion 82/123

Tail Recursion
Problem
Recursive function calls takes longer than executing a simple loop.

Solution
Tail recursion optimisation: Implement tail recursive functions using jump or branching instruc-
tions.

Definition
‘A tail recursive function is a function where the very last operation of the function
is the recursive call to itself.’ (p. 203)

Example (Factorial function)
See directory fp/factorial.

Tail Recursion 83/123

Anonymous Functions
Example
The anonymous function λxy.y2 + x can be represented in Hakell by

\ x y -> y * y + x

We applied the anonymous functions as usual

(\ x y -> y * y + x) 3 4

We also can bind an identifier to the anonymous function

foo :: Int -> Int -> Int
foo = (\ x y -> y * y + x)
foo 3 4

Anonymous Functions 84/123

Higher-Order Functions
Definition
A function is higher-order iff

i) it takes a function as a parameter or

ii) it returns a function as its result.

Higher-Order Functions 85/123

Higher-Order Functions
Example
The composition operator (.) composes two functions. It is defined in the base library by

(.) :: (b -> c) -> (a -> b) -> a -> c
(.) f g = \ x -> f (g x)

See file fp/HigherOrder.hs.

Higher-Order Functions 86/123

Higher-Order Functions
Example
The map functions applies a function to every element of a list.

The expression map f xs is the list obtained by applying f to each element of xs.

The map function is defined in the base library by

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x : xs) = f x : map f xs

See file fp/HigherOrder.hs.

Higher-Order Functions 87/123

Higher-Order Functions
Example
The foldr function (on lists) reduces a list using a binary operator from right to left, i.e.

foldr f z [x1, x2, ..., xn] ==
x1 ‘f‘ (x2 ‘f‘ ... (xn ‘f‘ z)...)

The foldr function on lists can be defined by

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x : xs) = f x (foldr f z xs)

See file fp/HigherOrder.hs.

Higher-Order Functions 88/123

Higher-Order Functions
Example
The foldl function (on lists) reduces a list using a binary operator from left to right, i.e.

foldl f z [x1, x2, ..., xn] ==
(...((z ‘f‘ x1) ‘f‘ x2) ‘f‘...) ‘f‘ xn

The foldl function on lists can be defined by

foldl :: (a -> b -> b) -> b -> [a] -> b
foldl f z [] = z
foldl f z (x : xs) = foldl f (f z x) xs

Higher-Order Functions 89/123

Higher-Order Functions
Example
The filter function returns those elements of a list that satisfy a predicate (i.e., a function
a -> Bool).

The filter function is defined in the base library by

filter :: (a -> Bool) -> [a] -> [a]
filter _ [] = []
filter p (x : xs)
| p x = x : filter p xs
| otherwise = filter p xs

Higher-Order Functions 90/123

Type Classes
Example
Does the element occur in the list?

elem :: a -> [a] -> Bool
elem x [] = False
elem x (y : ys) = x == y || elem x ys

The above code generates the following error:

error: No instance for (Eq a) arising from a use of ‘==’

(continued on next slide)

Type Classes 91/123

Type Classes
Example
Does the element occur in the list?

elem :: a -> [a] -> Bool
elem x [] = False
elem x (y : ys) = x == y || elem x ys

The above code generates the following error:

error: No instance for (Eq a) arising from a use of ‘==’

(continued on next slide)

Type Classes 92/123

Type Classes
Example (continuation)
We can fix the error by adding the type constraint Eq a which restricts the type a to instances
of the type class Eq.

elem :: Eq a => a -> [a] -> Bool
elem x [] = False
elem x (y : ys) = x == y || elem x ys

Type Classes 93/123

Type Classes
Description
Type classes provide a structured way to control ad hoc polymorphism, or overloading.

Example
The type class Eq is defined by

class Eq a where
(==) :: a -> a -> Bool

Type Classes 94/123

Type Classes
Example
The data types Bool and Nat are instances of the type class Eq.

instance Eq Bool where
True == True = True
False == False = True
_ == _ = False

instance Eq Nat where
Zero == Zero = True
Zero == (Succ _) = False
(Succ _) == Zero = False
(Succ m) == (Succ n) = m == n

Type Classes 95/123

Type Classes
Example

data Day = Mon | Tue | Wed | Thu | Fri | Sat | Sun

GHCi> elem Mon [Tue, Sat, Sun]

error: No instance for (Eq Day) arising from a use of ‘==’

(continued on next slide)

Type Classes 96/123

Type Classes
Example (continuation)
A solution: Adding the missing instance

instance Eq Day where
Mon == Mon = True
Tue == Tue = True
Wed == Wed = True
Thu == Thu = True
Fri == Fri = True
Sat == Sat = True
Sun == Sun = True
_ == _ = False

(continued on next slide)

Type Classes 97/123

Type Classes
Example (continuation)
A solution: Using the deriving mechanism

data Day = Mon | Tue | Wed | Thu | Fri | Sat | Sun
deriving Eq

Type Classes 98/123

Continuation Passing Style
Description

‘Continuation Passing Style (or CPS) is a way of writing functional programs where
control is made explicit. In other words, the continuation represents the remaining
work to be done.’ (p. 212)

Example
See file fp/CPS.hs.

Continuation Passing Style 99/123

Continuation Passing Style
Description

‘Continuation Passing Style (or CPS) is a way of writing functional programs where
control is made explicit. In other words, the continuation represents the remaining
work to be done.’ (p. 212)

Example
See file fp/CPS.hs.

Continuation Passing Style 100/123

Input and Output
The problem
How can programs with input and output be modelled as pure functions?

The solution
There are various approaches for using pure functions and side-effects (see, e.g. [Peyton Jones
and Wadler 1993]). Haskell’s solution is via monads.

Input and Output 101/123

Input and Output
The problem
How can programs with input and output be modelled as pure functions?

The solution
There are various approaches for using pure functions and side-effects (see, e.g. [Peyton Jones
and Wadler 1993]). Haskell’s solution is via monads.

Input and Output 102/123

Input and Output
The unit type
The unit type is a type with only one element. Haskell unity type and its element are

() :: ()

The unit type is useful when performing input-output.

Input and Output 103/123

Input and Output
The IO type
The following description of the type IO is from [Hutton 2016, § 10.2].

A program with input-output can be represented by a function

World -> World

type IO = World -> World

What about if the program returns a value?

type IO a = World -> (a, World)

(continued on next slide)

Input and Output 104/123

Input and Output
The IO type
The following description of the type IO is from [Hutton 2016, § 10.2].

A program with input-output can be represented by a function

World -> World

type IO = World -> World

What about if the program returns a value?

type IO a = World -> (a, World)

(continued on next slide)

Input and Output 105/123

Input and Output
The IO type
The following description of the type IO is from [Hutton 2016, § 10.2].

A program with input-output can be represented by a function

World -> World

type IO = World -> World

What about if the program returns a value?

type IO a = World -> (a, World)

(continued on next slide)

Input and Output 106/123

Input and Output
The IO type (continuation)
What about if the program requires an argument?

For example, a program requiring a character and returning an integer has the type

Char -> IO Int

Char -> World -> (Int, World)

The compiler has the responsibility of handling the state of world. The type IO a is primitive in
Haskell.

Input and Output 107/123

Input and Output
The IO type (continuation)
What about if the program requires an argument?

For example, a program requiring a character and returning an integer has the type

Char -> IO Int

Char -> World -> (Int, World)

The compiler has the responsibility of handling the state of world. The type IO a is primitive in
Haskell.

Input and Output 108/123

Input and Output
Definition
An action is an expression of type IO a. When the expression is evaluated the action is performed.

Example
t : IO Char is the action that returns a character.

t : IO () is the action that no returns a value, where () is a dummy result value.

Input and Output 109/123

Input and Output
Definition
An action is an expression of type IO a. When the expression is evaluated the action is performed.

Example
t : IO Char is the action that returns a character.

t : IO () is the action that no returns a value, where () is a dummy result value.

Input and Output 110/123

Input and Output
The abstract datatype IO a

The abstract datatype IO a has (at least) the following operations [Bird 1998, § 10.1]:

return :: a -> IO a
(>>=) :: IO a -> (a -> IO b) -> IO b
putChar :: Char -> IO ()
getChar :: IO Char

Input and Output 111/123

Input and Output
Example
See file fp/IO.hs.

Input and Output 112/123

Testing via QuickCheck

A paper
Claessen, Koen and Hughes, John [2000]. QuickCheck: A Lightweight Tool for Random Testing
of Haskell Programs. ICFP’00. DOI: https://doi.org/10.1145/357766.351266.

Most Influential ICFP Paper Award 2010∗

‘The techniques described in the paper have spawned a significant body of follow-on
work in test case generation. They have also been adapted to other languages . . . ’

∗See www.sigplan.org/Awards/ICFP/.
Testing 113/123

https://doi.org/10.1145/357766.351266
www.sigplan.org/Awards/ICFP/

Testing via QuickCheck

A paper
Claessen, Koen and Hughes, John [2000]. QuickCheck: A Lightweight Tool for Random Testing
of Haskell Programs. ICFP’00. DOI: https://doi.org/10.1145/357766.351266.

Most Influential ICFP Paper Award 2010∗

‘The techniques described in the paper have spawned a significant body of follow-on
work in test case generation. They have also been adapted to other languages . . . ’

∗See www.sigplan.org/Awards/ICFP/.
Testing 114/123

https://doi.org/10.1145/357766.351266
www.sigplan.org/Awards/ICFP/

Testing via QuickCheck

An open source library
QuickCheck on Hackage.∗

Commercialisation
QuviQ (www.quviq.com/).

∗http://hackage.haskell.org/package/QuickCheck.
Testing 115/123

www.quviq.com/
http://hackage.haskell.org/package/QuickCheck

Testing via QuickCheck

An open source library
QuickCheck on Hackage.∗

Commercialisation
QuviQ (www.quviq.com/).

∗http://hackage.haskell.org/package/QuickCheck.
Testing 116/123

www.quviq.com/
http://hackage.haskell.org/package/QuickCheck

Testing via QuickCheck

Adaptations
QuickCheck has been ported to various languages (Wikipedia 2023-10-17).

C C# C++ Chicken Clojure
Common Lisp Coq D Elm Elixir
Erlang F# Factor Go Io
Java JavaScript Julia Logtalk Lua
Mathematica Objective-C OCaml Perl Prolog
PHP Pony Python R Racket
Ruby Rust Scala Scheme Smalltalk
Standard ML Swift TypeScript Visual Basic .NET Vhiley

Testing 117/123

Testing via QuickCheck

False positive
The program works properly but the test pointed out a fail:

There is a bug elsewhere.
There is an error in the specification.

False negative
There is a bug in the program but the test passed.

Recall Dijkstra’s 1969 famous quote:

‘Testing shows the presence, not the absence of bugs.’ (Buxton and Randell 1970)

Testing 118/123

Testing via QuickCheck

False positive
The program works properly but the test pointed out a fail:

There is a bug elsewhere.
There is an error in the specification.

False negative
There is a bug in the program but the test passed.

Recall Dijkstra’s 1969 famous quote:

‘Testing shows the presence, not the absence of bugs.’ (Buxton and Randell 1970)

Testing 119/123

Testing via QuickCheck

QuickCheck demo

Testing 120/123

References
Barendregt, H. P. [1981] (2004). The Lambda Calculus. Its Syntax and Semantics. Revised edition,
6th impression. Vol. 103. Studies in Logic and the Foundations of Mathematics. Elsevier (cit. on
p. 16).
Bird, Richard [1988] (1998). Introduction to Functional Programming. 2nd ed. Prentice Hall Press
(cit. on p. 111).
Buxton, J. N. and Randell, B., eds. (1970). Software Engineering Techniques (NATO Software
Engineering Conference 1969). (Cit. on pp. 118, 119).
Church, Alonzo (1932). A Set of Postulates for the Foundation of Logic. Annals of Mathematics
33.2, pp. 346–366. doi: 10.2307/1968337 (cit. on pp. 8–10).
— (1935). An Unsolvable Problem of Elementary Number Theory. Preliminar Report (Abstract).
Bulletin of the American Mathematical Society 41.5, pp. 332–333. doi: 10.1090/S0002-9904-1935-
06102-6 (cit. on p. 23).
— (1936). An Unsolvable Problem of Elementary Number Theory. American Journal of Mathem-
atics 58.2, pp. 345–363. doi: 10.2307/2371045 (cit. on p. 23).

References 121/123

https://doi.org/10.2307/1968337
https://doi.org/10.1090/S0002-9904-1935-06102-6
https://doi.org/10.1090/S0002-9904-1935-06102-6
https://doi.org/10.2307/2371045

References
Hindley, J. Roger and Seldin, Jonathan P. (2008). Lambda-Calculus and Combinators. An Introduc-
tion. Cambridge University Press (cit. on p. 16).
Hudak, Paul, Hughes, John, Peyton Jones, Simon and Wadler, Philip (2007). A History of Haskell:
Being Lazy with Class. In: Proceedings of the third ACM SIGPLAN conference on History of
programming languages. HOPL III, 12:1–12:55. doi: 10.1145/1238844.1238856 (cit. on p. 24).
Hudak, Paul, Peterson, John and Fasel, Joseph H. (1999). A Gentle Introduction to Haskell 98.
url: https://www.haskell.org/tutorial/ (cit. on pp. 71–73).
Hughes, J. (1989). Why Functional Programming Matters. The Computer Journal 32.2, pp. 98–107.
doi: 10.1093/comjnl/32.2.98 (cit. on pp. 27, 28).
Hutton, Graham [2007] (2016). Programming in Haskell. 2nd ed. Cambridge University Press (cit. on
pp. 4–6, 104–106).
Lee, Kent D. [2014] (2017). Foundations of Programming Languages. 2nd ed. Undergraduate Topics
in Computer Science. Springer (cit. on p. 2).
O’Sullivan, Bryan, Goerzen, John and Stewart, Don (2008). Real World Haskell. O’Really Media,
Inc. (cit. on pp. 4–6).

References 122/123

https://doi.org/10.1145/1238844.1238856
https://www.haskell.org/tutorial/
https://doi.org/10.1093/comjnl/32.2.98

References
Peyton Jones, Simon L. and Wadler, Philip (1993). Imperative Functional Programming. In:
Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 1993), pp. 71–84. doi: 10.1145/158511.158524 (cit. on pp. 101, 102).

References 123/123

https://doi.org/10.1145/158511.158524

	Preliminaries
	Introduction
	Lambda Calculus
	Getting Started with Haskell
	Expressions, Types, Functions and Guards
	Lists
	Parametric Polymorphism
	Recursion
	Characters and Strings
	Lazy Evaluation
	Algebraic Data Types and Pattern Matching
	Tuples
	Let Expressions and Where Clauses
	Efficiency of Recursion
	Tail Recursion
	Anonymous Functions
	Higher-Order Functions
	Type Classes
	Continuation Passing Style
	Input and Output
	Testing
	References

