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Team Orienteering Problem (TOP)

The team orienteering problem is a generalization of the orienteering
problem (OP), where m vehicles are available to visit n nodes and the
goal is to determine m routes, without exceeding given thresholds,
that maximize the total collected prize. No node can be visited more
than once by one or several routes and there is the possibility of not
visiting all nodes [Chao et al., 1996].

Figure: TOP Example
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Mathematical Model

Sets, decision variables and parameters

V : set of all nodes

V ′ : set of required nodes V \ {0, n + 1}
V 1 : V \ {0}
V 2 : V \ {n + 1}

xij(d .v) : equal to 1 if arc (i , j) is traversed

Li(d .v) : traversed distance from node 0 to node i

pi : profit of node i

Lmax : maximal length tour

dij : distance between nodes i and j

si : service time at node i
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Mathematical Model

max Z =
∑
i∈V 2

∑
j∈V 1

pj · xij

∑
j∈V 2

x0j ≤ m

∑
i∈V 1

xi ,n+1 =
∑
j∈V 2

x0j∑
i∈V 2

xij ≤ 1 ∀ j ∈ V 1

∑
j∈V 1

xij ≤ 1 ∀ i ∈ V 2
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Mathematical Model III

∑
i∈V 2

xij =
∑
i∈V 1

xji ∀ j ∈ V 1

Lj ≥ Li + (dij + si) · xij − Lmax · (1− xij) ∀ i ∈ V 2, j ∈ V 1

Li ≤ Lmax ∀ i ∈ V 2

xij ∈ {0, 1} ∀ i ∈ V 1, j ∈ V 2

Li ≥ 0 ∀ i ∈ V

Additional valid inequalities:

Li + si + di ,n+1 ≤ Lmax ∀ i ∈ V ′∑
j∈V 1

dij · xij ∈ sos1∗ ∀ i ∈ V 2

∗sos1: special ordered sets type 1
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Objectives

To compare exact solution approaches for TOP based on
constraint programming (CP) and mixed integer linear
programming (MILP) by using Cplex.

To propose a heuristic algorithm based on the hybridization of
mathematical programming formulations and adaptive large
neighborhood search heuristics (ALNS).
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Constraint Programming

“The essence of constraint programming is a two-level architecture
integrating a constraint and a programming component. The
constraint component provides the basic operations of the
architecture and consists of a system reasoning about fundamental
properties of constraint systems such as satisfiability and entailment.
The constraint component is often called the constraint store, by
analogy to the memory store of traditional programming languages.
Operating around the constraint store is a programming-language
component that specifies how to combine the basic operations, often
in non-deterministic way” [Gass and Harris, 2012, p 268].
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Constraint Programming Example

Matlab:
a = 10;
sum = 0;
for i = 1 : a

sum = sum + i ;
end
if sum == 55

disp(′True ′);
else

disp(′False ′);
end

Result: True.

CP:
int a = 1..10
sum(x in a) a[x ] == 55;

Result: True.
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Matheuristic ALNS

First proposed by [Pisinger and Ropke, 2007]

Set of destroy and repair procedures

Repair procedures will be replaced by solving mathematical
models
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Questions?
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