Computational implementation of the calculation of some integrals related to the Wavelet-Galerkin method Research practise 2 progress presentation

> Obed Ríos-Ruiz oriosru@eafit.edu.co

Advisor: Patricia Gómez-Palacio pagomez@eafit.edu.co

EAFIT University

April 08, 2016

Problem: Galerkin method

Mathematical formulation

Consider ϕ_i as a base of $L^2([0,1])$ and every ϕ_i satisfying C^2 on [0,1] such that $\phi_i(0) = a, \phi_i(1) = b, u_0$ as an approximate solution of the equation with Λ, S as a finite set of indices i and the subspace $span\{\phi_i : i \in \Lambda\}$ respectively so that [3]:

$$\langle Lu_0 - f, \phi_i \rangle = 0, \quad \forall i \in \Lambda$$
 (1)

$$u_0 = \sum_{k \in \Lambda} a_k \phi_k \in S.$$
(2)

Letting \tilde{u} of the form (2) as the approximate solution of (1) it is intended that the residue $R = L\tilde{u} - f$ to be orthogonal to the chosen base on \mathcal{D}_L .

Problem: Wavelet-Galerkin method

The Wavelet-Galerkin method considers $\phi(x) = \Psi_{j,k}(x) = 2^{j/2}\Psi(2^jx - k)$ as a wavelet basis for $L^2([0, 1])$ satisfying the boundary conditions $\Psi_{j,k}(0) = \Psi_{j,k}(1) = 0$ and $\forall j, k \in \Lambda$ then $\Psi_{j,k}$ is C^2 . Using the Daubechies [1] wavelets then both $\varphi_{j,k}$ and $\Psi_{j,k}$ can be computed setting the scaling and mother wavelet functions respectively as

$$\varphi(x) = \sum_{k=0}^{L-1} a_k \varphi(2x - k)$$

$$\Psi(x) = \sum_{k=2-L}^{L} (-1)^k a_{1-k} \varphi(2x - k),$$
(3)

with a_k characterized for the N-Daubechies wavelet grade.

Daubechies Wavelets

Figure 1: Scaling and Wavelet functions for DN4

Daubechies Wavelets

Figure 2: Scaling and Wavelet functions for DN12

Calculations Daubechies Wavelets

Figure 3: Scaling and Wavelet functions for DN20

Formulations Connection Coefficients

It is neccessary to computate several expressions in order to find the solution of differential equation by using this method, specifically the *Connection coefficients* [2] defined as follows:

Connection coefficients

$$\Omega_{j,k}^{m,n}(x) = \int_{-\infty}^{\infty} \varphi^{(m)}(y-j)\varphi^{(n)}(y-k)\mathrm{d}y.$$
 (4)

2-term Connection Coefficients

Taking the respective derivatives and simplificating the following system of linear equations is found, where $\Omega^{m,n}$ is the unknown vector to be calculated.

$$\begin{pmatrix} T - \frac{1}{2^{d-1}}I \\ M^d \end{pmatrix} \Omega^{m,n} = \begin{pmatrix} 0 \\ d! \end{pmatrix}$$
(5)

where d = m + n, $T = \sum_{i} a_{i} a_{q-2l+i}$ and M_{i}^{k} are the moments of φ_{i} defined as

$$M_i^k = \int_{-\infty}^{\infty} x^k \varphi_i(x) dx,$$

satisfying $M_0^0 = 1$.

Connection Coefficients Calculations

$\Omega[-4]$	5.357142857141725e - 03
$\Omega[-3]$	1.142857142857160e - 01
$\Omega[-2]$	-8.761904761904885e - 01
$\Omega[-1]$	3.390476190476218e + 00
$\Omega[0]$	-5.267857142857142e + 00
$\Omega[1]$	3.390476190476168e + 00
$\Omega[2]$	-8.761904761904653e - 01
$\Omega[3]$	1.142857142857138e - 01
$\Omega[4]$	5.357142857143558e - 03

Table 1: Connection Coefficients for N = 6, j = 0, m = 2, n = 0

Connection Coefficients Calculations

$\Omega[-4]$	8.777142857143009e + 01
$\Omega[-3]$	1.872457142857140e + 03
$\Omega[-2]$	-1.435550476190474e + 04
$\Omega[-1]$	5.554956190476182e + 04
$\Omega[0]$	-8.630857142857110e + 04
$\Omega[1]$	5.554956190476169e + 04
$\Omega[2]$	-1.435550476190469e + 04
$\Omega[3]$	1.872457142857137e + 03
$\Omega[4]$	8.777142857143159e + 01

Table 2: Connection Coefficients for N = 6, j = 7, m = 2, n = 0

Connection Coefficients Calculations

2.547463883891842e - 04
-2.608603017123225e - 02
-1.691636444481563e - 01
2.415566393856456e + 00
-1.116590566972836e + 01
4.227312332967440e + 01
-6.665557825114264e + 01
4.227312332967382e + 01
-1.116590566972807e + 01
2.415566393856424e + 00
-1.691636444481482e - 01
-2.608603017123400e - 02
2.547463883939815e - 04

Table 3: Connection Coefficients for N = 8, j = 2, m = 2, n = 0

2-term Connection Coefficients

Let us consider the general integral-differential equation depending on u with $x \in [a, b]$:

$$f(x, \frac{du}{dx}, \frac{d^2u}{dx^2}, \dots, \int^x u dx_1, \int^x \int^{x_1} u dx_2 dx_1, \dots) = 0.$$
 (6)

Following the common notation for the approximation of u according to (2), we have \tilde{u} is as follows:

$$\tilde{u}(x) = \sum_{k=1-L}^{2^{j}} c_{k} \varphi_{j,k}(x) = \sum_{k=1-L}^{2^{j}} c_{k} 2^{j/2} \varphi(2^{j}x - k).$$
(7)

2-term Connection Coefficients

Using this approximation, the coefficients c_k are determined by applying the inner product and solving (8) for $k = 1 - L, \ldots, 2^j$.

$$\int_{a}^{b} \varphi_{j,k}(x) f(x, \frac{d\tilde{u}}{dx}, \frac{d^{2}\tilde{u}}{dx^{2}}, \dots, \int^{x} \tilde{u} dx_{1}, \int^{x} \int^{x_{1}} \tilde{u} dx_{2} dx_{1}, \dots) = 0 \quad (8)$$

Application Example

Consider the problem

$$\frac{d^2 u}{dx^2} + \beta u = 0, \quad 0 < x < 1,$$

$$u(0) = 1 \quad y \quad u(1) = 0.$$
(9)

Whose exact solution is $u(x) = \cos(x) - \cot(1)\sin(x)$.

When solving this second-order linear differential equation through the Wavelet-Galerkin method concerning u as unknown function then the two terms-connection coefficients result from (4) for $n = 1 - L, \ldots, 2^j$ into

$$\Omega_{j,k}^{m,n}(x) = \Omega_k^n = \Omega[n-k] = \int_{-\infty}^{\infty} \varphi_k''(x)\varphi_n(x)dx.$$

Application Example L = 6 and j = 0

According to (8) we must find c_k such that

$$\sum_{k=-5}^{1} c_k \Omega[n-k] + \beta \sum_{k=-5}^{1} c_k \delta_{n,k} = 0, \text{ where}$$
$$\Omega[n-k] = \int \varphi''(x-k)\varphi(x-n) \text{ and}$$
$$\delta_{n,k} = \int \varphi(x-k)\varphi(x-n).$$

Using the coefficients for this case \mathfrak{R} we build the following linear system TC = B, where C is the unknown vector $C^T = \begin{pmatrix} c_{-5} & c_{-4} & c_{-3} & c_{-2} & c_{-1} & c_0 & c_1 \end{pmatrix}$ and

Application Example L = 6 and j = 0

$$T = \begin{pmatrix} 0 & \varphi(4) & \varphi(3) & \varphi(2) & \varphi(1) & 0 & 0\\ \Omega[1] & \Omega[0] + \beta & \Omega[-1] & \Omega[-2] & \Omega[-3] & \Omega[-4] & \Omega[-5]\\ \Omega[2] & \Omega[1] & \Omega[0] + \beta & \Omega[-1] & \Omega[-2] & \Omega[-3] & \Omega[-4]\\ \Omega[3] & \Omega[2] & \Omega[1] & \Omega[0] + \beta & \Omega[-1] & \Omega[-2] & \Omega[-3]\\ \Omega[4] & \Omega[3] & \Omega[2] & \Omega[1] & \Omega[0] + \beta & \Omega[-1] & \Omega[-2]\\ \Omega[5] & \Omega[4] & \Omega[3] & \Omega[2] & \Omega[1] & \Omega[0] + \beta & \Omega[-1]\\ 0 & 0 & \varphi(4) & \varphi(3) & \varphi(2) & \varphi(1) & 0 \end{pmatrix}$$

and

$$B = \begin{pmatrix} 1\\0\\0\\0\\0\\0\\0 \end{pmatrix}$$

Application Example L = 6 and j = 0

Solving the last system we find

$$C = \begin{pmatrix} -0.9972\\ -0.8776\\ 0.1279\\ 1.0543\\ 1.0870\\ 0.2479\\ -0.5059 \end{pmatrix}$$

and therefore

$$\tilde{u}(x) = \sum_{k=-5}^{1} c_k \varphi(x-k) = -0.9972 \varphi(x+5) - 0.8776 \varphi(x+4) + \dots$$

$$0.1279 \varphi(x+3) + 1.0543 \varphi(x+2) + 1.0870 \varphi(x+1) + \dots$$

$$0.2476 \varphi(x) - 0.5059 \varphi(x-1).$$

Calculations Daubechies Wavelets

Figure 4: Exact and approximate solution of u'' + u = 0, with u(0) = 1 and u(1) = 0.

Daubechies Wavelets

Figure 5: Error between u and \tilde{u}

Project Where are we now?

Figure 6: Project objectives and schedule

Acknowledgment

THANK YOU FOR YOUR ATTENTION!

QUESTIONS?

Bibliography

- DAUBECHIES, I., Orthonormal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics, vol. 41, no. 7, pp. 909–996 (1988).
- [2] POPOVICI, C.I., Matlab Evaluation of the $\Omega_{j,k}^{m,n}(x)$ Coefficients for PDE Solving by Wavelet-Galerkin Approximation. Analele Științifice ale Universității "Ovidius" Constanța. Seria: Matematică, vol. 18, pp. 287–294 (2010).
- [3] MISHRA, V. AND SABINA, Wavelet Galerkin Solutions of Ordinary Differential Equations. International Journal of Mathematics, vol. 5, no. 9, pp. 407–424 (2011).