Computational implementation of the calculation of some integrals related to the Wavelet-Galerkin method
 Research practise 2 progress presentation

Obed Ríos-Ruiz
oriosru@eafit.edu.co
Advisor: Patricia Gómez-Palacio pagomez@eafit.edu.co

EAFIT University

April 08, 2016

Formulations

Problem: Galerkin method

Mathematical formulation

Consider ϕ_{i} as a base of $L^{2}([0,1])$ and every ϕ_{i} satisfying C^{2} on $[0,1]$ such that $\phi_{i}(0)=a, \phi_{i}(1)=b, u_{0}$ as an approximate solution of the equation with Λ, S as a finite set of indices i and the subspace $\operatorname{span}\left\{\phi_{i}: i \in \Lambda\right\}$ respectively so that [3]:

$$
\begin{gather*}
\left\langle L u_{0}-f, \phi_{i}\right\rangle=0, \quad \forall i \in \Lambda \tag{1}\\
u_{0}=\sum_{k \in \Lambda} a_{k} \phi_{k} \in S \tag{2}
\end{gather*}
$$

Letting \tilde{u} of the form (2) as the approximate solution of (1) it is intended that the residue $R=L \tilde{u}-f$ to be orthogonal to the chosen base on \mathcal{D}_{L}.

Formulations

Problem: Wavelet-Galerkin method

The Wavelet-Galerkin method considers
$\phi(x)=\Psi_{j, k}(x)=2^{j / 2} \Psi\left(2^{j} x-k\right)$ as a wavelet basis for $L^{2}([0,1])$ satisfying the boundary conditions $\Psi_{j, k}(0)=\Psi_{j, k}(1)=0$ and $\forall j, k \in \Lambda$ then $\Psi_{j, k}$ is C^{2}. Using the Daubechies [1] wavelets then both $\varphi_{j, k}$ and $\Psi_{j, k}$ can be computed setting the scaling and mother wavelet functions respectively as

$$
\begin{align*}
& \varphi(x)=\sum_{k=0}^{L-1} a_{k} \varphi(2 x-k) \\
& \Psi(x)=\sum_{k=2-L}^{L}(-1)^{k} a_{1-k} \varphi(2 x-k) \tag{3}
\end{align*}
$$

with a_{k} characterized for the N-Daubechies wavelet grade.

Calculations

Daubechies Wavelets

Figure 1: Scaling and Wavelet functions for DN4

Formulations

Daubechies Wavelets

Figure 2: Scaling and Wavelet functions for DN12

Calculations

Daubechies Wavelets

Figure 3: Scaling and Wavelet functions for DN20

Formulations

Connection Coefficients

It is neccesary to computate several expressions in order to find the solution of differential equation by using this method, specifically the Connection coefficients [2] defined as follows:
Connection coefficients

$$
\begin{equation*}
\Omega_{j, k}^{m, n}(x)=\int_{-\infty}^{\infty} \varphi^{(m)}(y-j) \varphi^{(n)}(y-k) \mathrm{d} y \tag{4}
\end{equation*}
$$

Formulations

2-term Connection Coefficients

Taking the respective derivatives and simplificating the following system of linear equations is found, where $\Omega^{m, n}$ is the unknown vector to be calculated.

$$
\begin{equation*}
\binom{T-\frac{1}{2^{d-1}} I}{M^{d}} \Omega^{m, n}=\binom{0}{d!} \tag{5}
\end{equation*}
$$

where $d=m+n, T=\sum_{i} a_{i} a_{q-2 l+i}$ and M_{i}^{k} are the moments of φ_{i} defined as

$$
M_{i}^{k}=\int_{-\infty}^{\infty} x^{k} \varphi_{i}(x) d x
$$

satisfying $M_{0}^{0}=1$.

Calculations

Connection Coefficients Calculations

$\Omega[-4]$	$5.357142857141725 e-03$
$\Omega[-3]$	$1.142857142857160 e-01$
$\Omega[-2]$	$-8.761904761904885 e-01$
$\Omega[-1]$	$3.390476190476218 e+00$
$\Omega[0]$	$-5.267857142857142 e+00$
$\Omega[1]$	$3.390476190476168 e+00$
$\Omega[2]$	$-8.761904761904653 e-01$
$\Omega[3]$	$1.142857142857138 e-01$
$\Omega[4]$	$5.357142857143558 e-03$

Table 1: Connection Coefficients for

$$
N=6, j=0, m=2, n=0
$$

Calculations

Connection Coefficients Calculations

$\Omega[-4]$	$8.777142857143009 e+01$
$\Omega[-3]$	$1.872457142857140 e+03$
$\Omega[-2]$	$-1.435550476190474 e+04$
$\Omega[-1]$	$5.554956190476182 e+04$
$\Omega[0]$	$-8.630857142857110 e+04$
$\Omega[1]$	$5.554956190476169 e+04$
$\Omega[2]$	$-1.435550476190469 e+04$
$\Omega[3]$	$1.872457142857137 e+03$
$\Omega[4]$	$8.777142857143159 e+01$

Table 2: Connection Coefficients for

$$
N=6, j=7, m=2, n=0
$$

Calculations

Connection Coefficients Calculations

$\Omega[-6]$	$2.547463883891842 e-04$
$\Omega[-5]$	$-2.608603017123225 e-02$
$\Omega[-4]$	$-1.691636444481563 e-01$
$\Omega[-3]$	$2.415566393856456 e+00$
$\Omega[-2]$	$-1.116590566972836 e+01$
$\Omega[-1]$	$4.227312332967440 e+01$
$\Omega[0]$	$-6.665557825114264 e+01$
$\Omega[1]$	$4.227312332967382 e+01$
$\Omega[2]$	$-1.116590566972807 e+01$
$\Omega[3]$	$2.415566393856424 e+00$
$\Omega[4]$	$-1.691636444481482 e-01$
$\Omega[5]$	$-2.608603017123400 e-02$
$\Omega[6]$	$2.547463883939815 e-04$

Table 3: Connection Coefficients for

$$
N=8, j=2, m=2, n=0
$$

Formulations

2-term Connection Coefficients

Let us consider the general integral-differential equation depending on u with $x \in[a, b]$:

$$
\begin{equation*}
f\left(x, \frac{d u}{d x}, \frac{d^{2} u}{d x^{2}}, \ldots, \int^{x} u d x_{1}, \int^{x} \int^{x_{1}} u d x_{2} d x_{1}, \ldots\right)=0 \tag{6}
\end{equation*}
$$

Following the common notation for the approximation of u according to (2), we have \tilde{u} is as follows:

$$
\begin{equation*}
\tilde{u}(x)=\sum_{k=1-L}^{2^{j}} c_{k} \varphi_{j, k}(x)=\sum_{k=1-L}^{2^{j}} c_{k} 2^{j / 2} \varphi\left(2^{j} x-k\right) . \tag{7}
\end{equation*}
$$

Formulations

2-term Connection Coefficients

Using this approximation, the coefficients c_{k} are determined by applying the inner product and solving (8) for $k=1-L, \ldots, 2^{j}$.

$$
\begin{equation*}
\int_{a}^{b} \varphi_{j, k}(x) f\left(x, \frac{d \tilde{u}}{d x}, \frac{d^{2} \tilde{u}}{d x^{2}}, \ldots, \int^{x} \tilde{u} d x_{1}, \int^{x} \int^{x_{1}} \tilde{u} d x_{2} d x_{1}, \ldots\right)=0 \tag{8}
\end{equation*}
$$

Application

Example

Consider the problem

$$
\begin{gather*}
\frac{d^{2} u}{d x^{2}}+\beta u=0, \quad 0<x<1 \tag{9}\\
u(0)=1 \quad \text { y }
\end{gather*} \quad u(1)=0 . ~ \$
$$

Whose exact solution is $u(x)=\cos (x)-\cot (1) \sin (x)$.
When solving this second-order linear differential equation through the Wavelet-Galerkin method concerning u as unknown function then the two terms-connection coefficients result from
(4) for $n=1-L, \ldots, 2^{j}$ into

$$
\Omega_{j, k}^{m, n}(x)=\Omega_{k}^{n}=\Omega[n-k]=\int_{-\infty}^{\infty} \varphi_{k}^{\prime \prime}(x) \varphi_{n}(x) d x
$$

Application

Example $L=6$ and $j=0$

According to (8) we must find c_{k} such that

$$
\begin{aligned}
& \sum_{k=-5}^{1} c_{k} \Omega[n-k]+\beta \sum_{k=-5}^{1} c_{k} \delta_{n, k}=0, \quad \text { where } \\
& \Omega[n-k]=\int \varphi^{\prime \prime}(x-k) \varphi(x-n) \quad \text { and } \\
& \delta_{n, k}=\int \varphi(x-k) \varphi(x-n)
\end{aligned}
$$

Using the coefficients for this case Ω_{B}^{D} we build the following linear system $T C=B$, where C is the unknown vector $C^{T}=\left(\begin{array}{lllllll}c_{-5} & c_{-4} & c_{-3} & c_{-2} & c_{-1} & c_{0} & c_{1}\end{array}\right)$ and

Application

Example $L=6$ and $j=0$

$$
T=\left(\begin{array}{ccccccc}
0 & \varphi(4) & \varphi(3) & \varphi(2) & \varphi(1) & 0 & 0 \\
\Omega[1] & \Omega[0]+\beta & \Omega[-1] & \Omega[-2] & \Omega[-3] & \Omega[-4] & \Omega[-5] \\
\Omega[2] & \Omega[1] & \Omega[0]+\beta & \Omega[-1] & \Omega[-2] & \Omega[-3] & \Omega[-4] \\
\Omega[3] & \Omega[2] & \Omega[1] & \Omega[0]+\beta & \Omega[-1] & \Omega[-2] & \Omega[-3] \\
\Omega[4] & \Omega[3] & \Omega[2] & \Omega[1] & \Omega[0]+\beta & \Omega[-1] & \Omega[-2] \\
\Omega[5] & \Omega[4] & \Omega[3] & \Omega[2] & \Omega[1] & \Omega[0]+\beta & \Omega[-1] \\
0 & 0 & \varphi(4) & \varphi(3) & \varphi(2) & \varphi(1) & 0
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

Application

Example $L=6$ and $j=0$

Solving the last system we find

$$
C=\left(\begin{array}{c}
-0.9972 \\
-0.8776 \\
0.1279 \\
1.0543 \\
1.0870 \\
0.2479 \\
-0.5059
\end{array}\right)
$$

and therefore

$$
\begin{gathered}
\tilde{u}(x)=\sum_{k=-5}^{1} c_{k} \varphi(x-k)=-0.9972 \varphi(x+5)-0.8776 \varphi(x+4)+\ldots \\
0.1279 \varphi(x+3)+1.0543 \varphi(x+2)+1.0870 \varphi(x+1)+\ldots \\
0.2476 \varphi(x)-0.5059 \varphi(x-1)
\end{gathered}
$$

Calculations

Daubechies Wavelets

Figure 4: Exact and approximate solution of $u^{\prime \prime}+u=0$, with $u(0)=1$ and $u(1)=0$.

Calculations

Daubechies Wavelets

Error between u and \tilde{u}

Figure 5: Error between u and \tilde{u}

Project

Where are we now?

Figure 6: Project objectives and schedule

Acknowledgment

THANK YOU FOR YOUR ATTENTION!

QUESTIONS?

Bibliography

[1] Daubechies, I., Orthonormal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics, vol. 41, no. 7, pp. 909-996 (1988).
[2] Popovici, C.I., Matlab Evaluation of the $\Omega_{j, k}^{m, n}(x)$ Coefficients for PDE Solving by Wavelet-Galerkin Approximation. Analele Ştiinţifice ale Universităţii "Ovidius" Constanţa. Seria: Matematică, vol. 18, pp. 287-294 (2010).
[3] Mishra, V. and Sabina, Wavelet Galerkin Solutions of Ordinary Differential Equations. International Journal of Mathematics, vol. 5, no. 9, pp. 407-424 (2011).

