Principal Component Analysis for Mixed Quantitative and Qualitative Data

Susana Agudelo-Jaramillo Manuela Ochoa-Muñoz

Tutor: Francisco Iván Zuluaga-Díaz

EAFIT University
Medellín-Colombia
Research Practise
April 12th, 2016

UNIVERSIDAD
EAFIT

Mixed Quantitative and Qualitative Data

Quantitative

There are many methods to analyze pure quantitative data.
\rightarrow Principal Component
Analysis.

Qualitative

There exist also several techniques to deal with pure qualitative data.
\rightarrow Correspondence Analysis.

PCAMIX

Correspondence Analysis

\rightarrow It is a graphical technique to represent information of a contingency table with two inputs, which contains the count of elements for crossclassification of two categorical variables.
\rightarrow These tables are based on two qualitative nominal or ordinal variables where categories of one variable appear in rows and other variable categories are represented in columns [de la Fuente Fernández, 2011].
\rightarrow Correspondence analysis can be useful to identify categories that are similar, which therefore can be combined.

Example

The following example illustrated how a quantification matrix works for a sample of 12 people and 4 categorical variables.

Figure 1: Categories for the four variables taken from [Rencher, 1934]

Variable	Levels
Gender	Male, female
Age	Young, middle-aged, old
Marital status	Single, married
Hair color	Blond, brown, black, red

Example

Figure 2: List of 12 people and their categories on four variables taken from [Rencher, 1934]

Person	Gender	Age	Marital Status	Hair Color
1	Male	Young	Single	Brown
2	Male	Old	Single	Red
3	Female	Middle	Married	Blond
4	Male	Old	Single	Black
5	Female	Middle	Married	Black
6	Female	Middle	Single	Brown
7	Male	Young	Married	Red
8	Male	Old	Married	Blond
9	Male	Middle	Single	Blond
10	Female	Young	Married	Black
11	Female	Old	Single	Brown
12	Male	Young	Married	Blond

Example

Figure 3: Correspondence analysis of the four variables

Indicator Matrix

$$
S_{i j}= \begin{cases}1 & \text { if object } i \text { belongs to the category of the variable } j \\ 0 & \text { if object } i \text { does not belong to the category of the variable } j\end{cases}
$$

Figure 4: Indicator matrix G for the data taken from [Rencher, 1934]

Person	Gender	Age	Marital Status	Hair Color
1	10	100	10	0100
2	10	001	10	0001
3	01	010	01	1000
4	10	001	10	0010
5	01	010	01	0010
6	01	010	10	0100
7	10	100	01	0001
8	10	001	01	1000
9	10	010	10	1000
10	01	100	01	0010
11	01	001	10	0100
12	10	100	01	1000

Burt Matrix

From the indicator matrix G we can get the $\mathrm{G}^{\prime} \mathrm{G}$ matrix known as the Burt matrix.

Figure 5: Burt Matrix G'G for the matrix G taken from [Rencher, 1934]

Gender		Age			Marital Status		Hair Color			
7	0	3	1	3	4	3	3	1	1	2
0	5	1	3	1	2	3	1	2	2	0
3	1	4	0	0	1	3	1	1	1	1
1	3	0	4	0	2	2	2	1	1	0
3	1	0	0	4	3	1	1	1	1	1
4	2	1	2	3	6	0	1	3	1	1
3	3	3	2	1	0	6	3	0	2	1
3	1	1	2	1	1	3	4	0	0	0
1	2	1	1	1	3	0	0	3	0	0
1	2	1	1	1	1	2	0	0	3	0
2	0	1	0	1	1	1	0	0	0	2

Burt Matrix

In the diagonal blocks appear matrices containing the marginal frequencies of each of the variables analyzed.

Outside the diagonal appear contingency tables of frequencies corresponding to all combinations 2 to 2 of the variables analyzed.

Figure 6: Part of the contingency tables for variables Gender and Age

Gender		Age		
7	0	3	1	3
0	5	1	3	1
3	1	4	0	0
1	3	0	4	0
3	1	0	0	4

Quantification Matrices

Quantification matrices transform qualitative data into components which facilitates the analysis of results.
\rightarrow The idea of using quantification matrices is to define correlation coefficients.
\rightarrow The quantification matrices are used to measure similarity and dissimilarity between the objects respect to a variable.

Quantification Matrix $G_{j} G_{j}^{\prime}$

The elements of the quantification matrix $G_{j} G_{j}^{\prime}$ are given by:

$$
S_{i i^{\prime} j}= \begin{cases}1 & \text { if object } i \text { and object } i^{\prime} \text { belong to the same category } \\ 0 & \text { if object } i \text { and object } i^{\prime} \text { belong to different category }\end{cases}
$$

$S_{i i^{\prime} j}$ it is a measure of similarity between sample objects i and i^{\prime} in terms of a particular variable j.

The frequency categories and the number of categories are not taken into account in this measure of similarity [Kiers, 1989].

Quantification Matrix $G_{j} G_{j}^{\prime}$

Table 1: Quantification matrix $G G^{\prime}$ of hair color variable

Hair Color											
1	0	0	0	0	1	0	0	0	0	1	0
0	1	0	0	0	0	1	0	0	0	0	0
0	0	1	0	0	0	0	1	1	0	0	1
0	0	0	1	1	0	0	0	0	1	0	0
0	0	0	1	1	0	0	0	0	1	0	0
1	0	0	0	0	1	0	0	0	0	1	0
0	1	0	0	0	0	1	0	0	0	0	0
0	0	1	0	0	0	0	1	1	0	0	1
0	0	1	0	0	0	0	1	1	0	0	1
0	0	0	1	1	0	0	0	0	1	0	0
1	0	0	0	0	1	0	0	0	0	1	0
0	0	1	0	0	0	0	1	1	0	0	

Example

Figure 7: List of 12 people and their categories on four variables taken from [Rencher, 1934]

Person	Gender	Age	Marital Status	Hair Color
1	Male	Young	Single	Brown
2	Male	Old	Single	Red
3	Female	Middle	Married	Blond
4	Male	Old	Single	Black
5	Female	Middle	Married	Black
6	Female	Middle	Single	Brown
7	Male	Young	Married	Red
8	Male	Old	Married	Blond
9	Male	Middle	Single	Blond
10	Female	Young	Married	Black
11	Female	Old	Single	Brown
12	Male	Young	Married	Blond

Quantification Matrix $G_{j}\left(G_{j}^{\prime} G_{j}\right)^{-1} G_{j}^{\prime}$

In this case Burt matrix inverted is added:

Table 2: Burt matrix inverted of hair color variable

Hair Color				
	Blond	Brown	Black	Red
Blond	0.25	0	0	0
Brown	0	0.33	0	0
Black	0	0	0.33	0
Red	0	0	0	0.5

Quantification Matrix $G_{j}\left(G_{j}^{\prime} G_{j}\right)^{-1} G_{j}^{\prime}$

The elements of the quantification matrix $G_{j}\left(G_{j}^{\prime} G_{j}\right)^{-1} G_{j}^{\prime}$ are given by:

$$
S_{i i^{\prime} j}= \begin{cases}f_{g}^{-1} & \text { if object } i \text { and object } i^{\prime} \text { belong to the same category } \\ 0 & \text { if object } i \text { and object } i^{\prime} \text { belong to different category }\end{cases}
$$

where f_{g}^{-1} is the $g^{t h}$ diagonal element of $\left(G_{j}^{\prime} G_{j}\right)^{-1}$ [Kiers, 1989].

Quantification Matrix $G_{j}\left(G_{j}^{\prime} G_{j}\right)^{-1} G_{j}^{\prime}$

Table 3: Quantification matrix $G\left(G^{\prime} G\right)^{-1} G^{\prime}$ of hair color variable

Hair Color											
0.33	0	0	0	0	0.33	0	0	0	0	0.33	0
0	0.5	0	0	0	0	0.5	0	0	0	0	0
0	0	0.25	0	0	0	0	0.25	0.25	0	0	0.25
0	0	0	0.33	0.33	0	0	0	0	0.33	0	0
0	0	0	0.33	0.33	0	0	0	0	0.33	0	0
0.33	0	0	0	0	0.33	0	0	0	0	0.33	0
0	0.5	0	0	0	0	0.5	0	0	0	0	0
0	0	0.25	0	0	0	0	0.25	0.25	0	0	0.25
0	0	0.25	0	0	0	0	0.25	0.25	0	0	0.25
0	0	0	0.33	0.33	0	0	0	0	0.33	0	0
0.33	0	0	0	0	0.33	0	0	0	0	0.33	0
0	0	0.25	0	0	0	0	0.25	0.25	0	0	0.25

Example

Figure 8: List of 12 people and their categories on four variables taken from [Rencher, 1934]

Person	Gender	Age	Marital Status	Hair Color
1	Male	Young	Single	Brown
2	Male	Old	Single	Red
3	Female	Middle	Married	Blond
4	Male	Old	Single	Black
5	Female	Middle	Married	Black
6	Female	Middle	Single	Brown
7	Male	Young	Married	Red
8	Male	Old	Married	Blond
9	Male	Middle	Single	Blond
10	Female	Young	Married	Black
11	Female	Old	Single	Brown
12	Male	Young	Married	Blond

Quantification Matrix $J G_{j}\left(G_{j}^{\prime} G_{j}\right)^{-1} G_{j}^{\prime} J$

Here the J matrix is added:

$$
J=I_{n}-\frac{11^{\prime}}{n}
$$

where I_{n} is the identity matrix, 1 is an ones vector and n is the sample size.

Quantification Matrix $J G_{j}\left(G_{j}^{\prime} G_{j}\right)^{-1} G_{j}^{\prime} J$

Table 4: J matrix

			J Matrix								
0.9166	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833
-0.0833	0.9166	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833
-0.0833	-0.0833	0.9166	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833
-0.0833	-0.0833	-0.0833	0.9166	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833
-0.0833	-0.0833	-0.0833	-0.0833	0.9166	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833
-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	0.9166	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833
-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	0.9166	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833
-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	0.9166	-0.0833	-0.0833	-0.0833	-0.0833
-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	0.9166	-0.0833	-0.0833	-0.0833
-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	0.9166	-0.0833	-0.0833
-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	0.9166	-0.0833
-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833	0.9166

Quantification Matrix $J G_{j}\left(G_{j}^{\prime} G_{j}\right)^{-1} G_{j}^{\prime} J$

This quantification matrix is a normalized version of the χ^{2} measure. Where $\chi^{2}=0$ if variables are statistically independent [Kiers, 1989].

The elements of the quantification matrix $J G_{j}\left(G_{j}^{\prime} G_{j}\right)^{-1} G_{j}^{\prime} J$ are given by:
$S_{i i^{\prime} j}= \begin{cases}f_{g}^{-1}-n^{-1} & \text { if object } i \text { and object } i^{\prime} \text { belong to the same category } \\ -n^{-1} & \text { if object } i \text { and object } i^{\prime} \text { belong to different category }\end{cases}$

Quantification Matrix $J G_{j}\left(G_{j}^{\prime} G_{j}\right)^{-1} G_{j}^{\prime} J$

Table 5: Quantification matrix $J G\left(G^{\prime} G\right)^{-1} G^{\prime} J$ of hair color variable

Hair Color											
0.25	-0.0833	-0.0833	-0.0833	-0.0833	0.25	-0.0833	-0.0833	-0.0833	-0.0833	0.25	-0.0833
-0.0833	0.4166	-0.0833	-0.0833	-0.0833	-0.0833	0.4166	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833
-0.0833	-0.0833	0.1666	-0.0833	-0.0833	-0.0833	-0.0833	0.1666	0.1666	-0.0833	-0.0833	0.1666
-0.0833	-0.0833	-0.0833	0.25	0.25	-0.0833	-0.0833	-0.0833	-0.0833	0.25	-0.0833	-0.0833
-0.0833	-0.0833	-0.0833	0.25	0.25	-0.0833	-0.0833	-0.0833	-0.0833	0.25	-0.0833	-0.0833
0.25	-0.0833	-0.0833	-0.0833	-0.0833	0.25	-0.0833	-0.0833	-0.0833	-0.0833	0.25	-0.0833
-0.0833	0.4166	-0.0833	-0.0833	-0.0833	-0.0833	0.4166	-0.0833	-0.0833	-0.0833	-0.0833	-0.0833
-0.0833	-0.0833	0.1666	-0.0833	-0.0833	-0.0833	-0.0833	0.1666	0.1666	-0.0833	-0.0833	0.1666
-0.0833	-0.0833	0.1666	-0.0833	-0.0833	-0.0833	-0.0833	0.1666	0.1666	-0.0833	-0.0833	0.1666
-0.0833	-0.0833	-0.0833	0.25	0.25	-0.0833	-0.0833	-0.0833	-0.0833	0.25	-0.0833	-0.0833
0.25	-0.0833	-0.0833	-0.0833	-0.0833	0.25	-0.0833	-0.0833	-0.0833	-0.0833	0.25	-0.0833
-0.0833	-0.0833	0.1666	-0.0833	-0.0833	-0.0833	-0.0833	0.1666	0.1666	-0.0833	-0.0833	0.1666

Example

Figure 9: List of 12 people and their categories on four variables taken from [Rencher, 1934]

Person	Gender	Age	Marital Status	Hair Color
1	Male	Young	Single	Brown
2	Male	Old	Single	Red
3	Female	Middle	Married	Blond
4	Male	Old	Single	Black
5	Female	Middle	Married	Black
6	Female	Middle	Single	Brown
7	Male	Young	Married	Red
8	Male	Old	Married	Blond
9	Male	Middle	Single	Blond
10	Female	Young	Married	Black
11	Female	Old	Single	Brown
12	Male	Young	Married	Blond

References

Re de la Fuente Fernández, S. (2011).
Análisis correspondencias simples y múltiples.
Universidad Autónoma de Madrid, pages 1-9.
國 Kiers, H. (1989).
Three-way methods for the analysis of qualitative and quantitative two-way data.

PhD thesis.

Rencher, A. C. (1934).
Methods of Multivariate Analysis.
Wiley Series in Probability and Statistics.

THANKS FOR YOUR ATTENTION

