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INTRODUCTION



Introduction

How can we teach computers to locate faces in an image?

Image retrieved on 17/02/2016 from http://www.ukprogressive.co.uk/wp-

content/uploads/2015/02/face-algorithm.png



Introduction

How can we teach computers to understand our voices?

Image retrieved on 17/02/2016 from http://www.psfk.com/2014/12/voice-recog

nition-software-translates-words-from-those-with-speech-disorders.html



Introduction

How can we teach computers to recognize characters?

Image retrieved on 18/02/2016 from http://teaching.paganstudio.com/digital

foundations/wp-content/uploads/2013/09/lpr_software_1.jpg



Inspiration

Image retrieved on 17/02/2016 from http://cosmonio.com/Research/Deep-Lear

ning/files/small_1420.png
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The XOR Problem

What about non linear-separable groups?

Image retrieved on 18/02/2016 from http://lab.fs.uni-lj.si/lasin/wp/

IMIT_files/neural/nn06_rbfn_xor/html/nn06_rbfn_xor_3_newpnn_01.png



Neural Network - Multilayer Perceptron
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STATE OF THE ART



State of the Art

2004 Methods based on BoW for image classification problems [5]



State of the Art - Bag of Words

Image retrieved on 04/04/2016 from
https://gilscvblog.files.wordpress.com/2013/08/figure31.jpg
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State of the Art - AlexNet Architecture

Source: Krizhevsky et al., 2012
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State of the Art - Clarifai Architecture

Source: Zeiler et al., 2014
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State of the Art - GoogLeNet Architecture

Source: Simonyan et al., 2015
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State of the Art

2004 Methods based on BoW for image classification problems [5]

2006 Incorporating spatial geometry to BoW models [7]

2006 Deep Learning success: Hinton [11], LeCun [12] and Bengio [13]

2010 Sparse coding for the image classification problem [6]

2011 Extracting high-order statistics - Fisher kernel + SVMs [4]

2012 CNN for image classification problem (AlexNet) [9]

2013 Development of a new visualization strategy (Clarifai) [2]

2014 Successful use of deeper architectures (VGG, GoogLeNet) [1] [8]

2015 Strategies for avoiding overfitting and underfitting [3]

2016 Representation learning for Deep Neural Networks [10]

Not only improving performance, but also gaining a better
understanding of DL and DNN.



CONVOLUTIONAL NEURAL NETS
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(1)(-1) + (2)(0) + (1)(1) + (2)(0) + (1)(-1) + (0)(1) + (1)(1) + (0)(-1) + (1)(1) + 0.5 = 1.5
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ReLU

(1)(-1) + (2)(0) + (1)(1) + (2)(0) + (1)(-1) + (0)(1) + (1)(1) + (0)(-1) + (1)(1) + 0.5

Output = Activation(Induced Local Field) = Non-linearity(Dot product + bias)
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Pooling Layer

Pooling
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M x M x D

Pool: Reduce the spatial dimension of the image in a controlled way
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Fully Connected Layers



AlexNet Architecture

Feature Extractor
via

Convolution

Classifier
via

Neural Network
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