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INTRODUCTION




Introduction

How can we teach computers to locate faces in an image?

Image retrieved on 17/02/2016 from http://www.ukprogressive.co.uk/wp-
content/uploads/2015/02/face-algorithm.png



Introduction

How can we teach computers to understand our voices?

e

Image retrieved on 17/02/2016 from http://www.psfk.com/2014/12/voice-recog
nition-software-translates-words-from-those-with-speech-disorders.html



Introduction

How can we teach computers to recognize characters?
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Image retrieved on 18/02/2016 from http://teaching.paganstudio.com/digital
foundations/wp-content/uploads/2013/09/1lpr_software_1.jpg



Inspiration

Image retrieved on 17/02/2016 from http://cosmonio.com/Research/Deep-Lear
ning/files/small_1420.png



Single-Layer Perceptron



The XOR Problem

What about non linear-separable groups?
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Image retrieved on 18/02/2016 from http://lab.fs.uni-1j.si/lasin/wp/
IMIT_files/neural/nn@6_rbfn_xor/html/nn@6_rbfn_xor_3_newpnn_01.png



Neural Network - Multilayer Perceptron
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Back-propagation
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STATE OF THE ART




State of the Art

2004 -e Methods based on BoW for image classification problems [5]



State of the Art - Bag of Words

Image retrieved on 04/04/2016 from
https://gilscvblog.files.wordpress.com/2013/08/figure31. jpg



State of the Art

2004 fT Methods based on BoW for image classification problems [5]
2006 -e

Incorporating spatial geometry to BoW models [7]
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State of the Art

2004 - Methods based on BoW for image classification problems [5]
2006 —l Incorporating spatial geometry to BoW models [7]

2006 —l Deep Learning success: Hinton [11], LeCun [12] and Bengio [13]
2010 —l Sparse coding for the image classification problem [6]

2011 —l Extracting high-order statistics - Fisher kernel + SVMs [4]

2012 —L

CNN for image classification problem (AlexNet) [9]



State of the Art - AlexNet Architecture
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Source: Krizhevsky et al., 2012



State of the Art
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Methods based on BoW for image classification problems [5]
Incorporating spatial geometry to BoW models [7]

Deep Learning success: Hinton [11], LeCun [12] and Bengio [13]
Sparse coding for the image classification problem [6]
Extracting high-order statistics - Fisher kernel + SVMs [4]

CNN for image classification problem (AlexNet) [9]

Development of a new visualization strategy (Clarifai) [2]



State of the Art - Clarifai Architecture
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Source: Zeiler et al., 2014
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Methods based on BoW for image classification problems [5]
Incorporating spatial geometry to BoW models [7]

Deep Learning success: Hinton [11], LeCun [12] and Bengio [13]
Sparse coding for the image classification problem [6]
Extracting high-order statistics - Fisher kernel + SVMs [4]

CNN for image classification problem (AlexNet) [9]
Development of a new visualization strategy (Clarifai) [2]

New pooling technique: not fixed input size required (SPP) [14]
Successful use of deeper architectures (VGG, GoogLeNet) [1] [8]



State of the Art - GooglLeNet Architecture
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State of the Art

2004 - Methods based on BoW for image classification problems [5]
2006 —‘o Incorporating spatial geometry to BoW models [7]

2006 —‘o Deep Learning success: Hinton [11], LeCun [12] and Bengio [13]
2010 —‘o Sparse coding for the image classification problem [6]

2011 —‘o Extracting high-order statistics - Fisher kernel + SVMs [4]

2012 —‘o CNN for image classification problem (AlexNet) [9]

2013 —‘o Development of a new visualization strategy (Clarifai) [2]

2014 —‘o Successful use of deeper architectures (VGG, GoogLeNet) [1] [8]
2015 —‘o Strategies for avoiding overfitting and underfitting [3]

2016 —}o Representation learning for Deep Neural Networks [10]

Not only improving performance, but also gaining a better
understanding of DL and DNN.



CONVOLUTIONAL NEURAL NETS




Convolution Layer

[Based on recent

Li et al slides]
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Convolve: Slide the filter over the image spatially computing dot products



Convolution Layer

Input Image

Filter - Kernel
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Convolution

Consider for example the case W=H=5,D =1, F=3,

Input Image Filter - Kernel

(D1 +(2)(0) + (1(1) + (2)(0) + (1(-1) + (0)(1) + (1)(1) + (0)(-1) + (1)(1) + 0.5=1.5



Convolution

Consider for example the case W=H=5,D =1, F=3,
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Filter - Kernel
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Output = Activation(Induced Local Field) = Non-linearity(Dot product + bias)



Convolution Layer

o Input Image Activation Map
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Convolution Layer

Input Image Activation Map

Convolution Layer
Multiple Independent Filters




Convolution Layer
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Pooling Layer

NxNxD

MxMxD

—
Pooling

Pool: Reduce the spatial dimension of the image in a controlled way

M<N



Max Pooling
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Fully Connected Layers

Input Hidden Output
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— Output




AlexNet Architecture
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