Mathematical Modelling of a Deregulated Electricity Market With Different Production Capacities
 Research Practise 2 Progress Presentation

Juan F. García-Pulgarín ${ }^{1}$ Carlos A. Cadavid-Moreno ${ }^{2}$
${ }^{1}$ Mathematical Engineering
EAFIT University
${ }^{2}$ Department of Mathematical Sciences
EAFIT University

April 12th, 2016

Outline

(1) Problem's Definition
(2) Objectives
(3) Results
(4) Further Work
(5) Bibliography

Outline

(1) Problem's Definition

(2) Objectives

(3) Results

4 Further Work
(5) Bibliography

Problem's Definition

We consider an electricity market, where generator firms are involved in a daily reverse auction in order to get the right to supply electricity to some community during next day. Symbolically:

Problem's Definition

We consider an electricity market, where generator firms are involved in a daily reverse auction in order to get the right to supply electricity to some community during next day. Symbolically:

- $g_{1}, g_{2}, \ldots, g_{N}$; generator firms, with production capacity k_{i} and operation cost $c_{i}, \forall i \in\{1,2, \ldots, N\}$.

Problem's Definition

We consider an electricity market, where generator firms are involved in a daily reverse auction in order to get the right to supply electricity to some community during next day. Symbolically:

- $g_{1}, g_{2}, \ldots, g_{N}$; generator firms, with production capacity k_{i} and operation cost $c_{i}, \forall i \in\{1,2, \ldots, N\}$.
- $K=\sum_{n=1}^{N} k_{n}$; total capacity of the system.

Problem's Definition

We consider an electricity market, where generator firms are involved in a daily reverse auction in order to get the right to supply electricity to some community during next day. Symbolically:

- $g_{1}, g_{2}, \ldots, g_{N}$; generator firms, with production capacity k_{i} and operation cost $c_{i}, \forall i \in\{1,2, \ldots, N\}$.
- $K=\sum_{n=1}^{N} k_{n}$; total capacity of the system.
- $d \in\{1, \ldots, K\}$; random variable, which determines electricity demand for the next day, with probability distribution $\pi_{i}=\operatorname{Pr}(d=i)$.

Problem's Definition

We consider an electricity market, where generator firms are involved in a daily reverse auction in order to get the right to supply electricity to some community during next day. Symbolically:

- $g_{1}, g_{2}, \ldots, g_{N}$; generator firms, with production capacity k_{i} and operation cost $c_{i}, \forall i \in\{1,2, \ldots, N\}$.
- $K=\sum_{n=1}^{N} k_{n}$; total capacity of the system.
- $d \in\{1, \ldots, K\}$; random variable, which determines electricity demand for the next day, with probability distribution $\pi_{i}=\operatorname{Pr}(d=i)$.
- $p_{i} \in[0, \bar{p}]$; unitary price offered by generator firm g_{i}, and \bar{p} is a regulatory maximum price.

Problem's Definition

$\circ r:\{1,2, \ldots, N\} \rightarrow\{1,2, \ldots, N\}$; ranking of lowest prices.

Problem's Definition

- $r:\{1,2, \ldots, N\} \rightarrow\{1,2, \ldots, N\}$; ranking of lowest prices.
- $n_{i}=r^{-1}(i), \forall i \in\{1, \ldots, N\}$; index of firm at position i in the ranking.

Problem's Definition

○ $r:\{1,2, \ldots, N\} \rightarrow\{1,2, \ldots, N\}$; ranking of lowest prices.

- $n_{i}=r^{-1}(i), \forall i \in\{1, \ldots, N\}$; index of firm at position i in the ranking.
- $K_{j}=\sum_{m=1}^{j} k_{n_{m}}$; sum of capacities of the first j firms in the ranking.

Problem's Definition

○ $r:\{1,2, \ldots, N\} \rightarrow\{1,2, \ldots, N\}$; ranking of lowest prices.

- $n_{i}=r^{-1}(i), \forall i \in\{1, \ldots, N\}$; index of firm at position i in the ranking.
- $K_{j}=\sum_{m=1}^{j} k_{n_{m}}$; sum of capacities of the first j firms in the ranking.
- $F_{1}, F_{2}, \ldots, F_{N}$; cumulative distribution function for the price offered by generator firms, respectively.

Problem's Definition

○ $r:\{1,2, \ldots, N\} \rightarrow\{1,2, \ldots, N\}$; ranking of lowest prices.

- $n_{i}=r^{-1}(i), \forall i \in\{1, \ldots, N\}$; index of firm at position i in the ranking.
- $K_{j}=\sum_{m=1}^{j} k_{n_{m}}$; sum of capacities of the first j firms in the ranking.
- $F_{1}, F_{2}, \ldots, F_{N}$; cumulative distribution function for the price offered by generator firms, respectively.
- u_{i}; utility of generator firm i, where

Problem's Definition

○ $r:\{1,2, \ldots, N\} \rightarrow\{1,2, \ldots, N\}$; ranking of lowest prices.

- $n_{i}=r^{-1}(i), \forall i \in\{1, \ldots, N\}$; index of firm at position i in the ranking.
- $K_{j}=\sum_{m=1}^{j} k_{n_{m}}$; sum of capacities of the first j firms in the ranking.
- $F_{1}, F_{2}, \ldots, F_{N}$; cumulative distribution function for the price offered by generator firms, respectively.
- u_{i}; utility of generator firm i, where

$$
u_{i}=\delta_{\rho}(i)\left(d-K_{\rho-1}\right)\left(p_{n_{\rho}}-c_{n_{\rho}}\right)+\sum_{m=1}^{\rho-1} \delta_{m}(i) k_{n_{m}}\left(p_{n_{\rho}}-c_{n_{m}}\right)
$$

Problem's Definition

○ $r:\{1,2, \ldots, N\} \rightarrow\{1,2, \ldots, N\}$; ranking of lowest prices.

- $n_{i}=r^{-1}(i), \forall i \in\{1, \ldots, N\}$; index of firm at position i in the ranking.
- $K_{j}=\sum_{m=1}^{j} k_{n_{m}}$; sum of capacities of the first j firms in the ranking.
- $F_{1}, F_{2}, \ldots, F_{N}$; cumulative distribution function for the price offered by generator firms, respectively.
- u_{i}; utility of generator firm i, where

$$
u_{i}=\delta_{\rho}(i)\left(d-K_{\rho-1}\right)\left(p_{n_{\rho}}-c_{n_{\rho}}\right)+\sum_{m=1}^{\rho-1} \delta_{m}(i) k_{n_{m}}\left(p_{n_{\rho}}-c_{n_{m}}\right)
$$

with $\rho=\max \left\{j: K_{j-1}<d\right\}$ and $\delta_{m}(i)=1$ if $i=n_{m}$ and $\delta_{m}(i)=0$, otherwise.

Problem's Definition

In order to obtain the expected aggregated supply curve in an equilibrium, we have to work in a Nash equilibrium situation, thus, adapting the definition of Nash equilibrium in finite mixed strategies given by [Navarro et al., 2003], we have that $F_{1}, F_{2}, \ldots, F_{N}$ is a Nash equilibrium if $\forall n \in\{1, \ldots, N\}$

Problem's Definition

In order to obtain the expected aggregated supply curve in an equilibrium, we have to work in a Nash equilibrium situation, thus, adapting the definition of Nash equilibrium in finite mixed strategies given by [Navarro et al., 2003], we have that $F_{1}, F_{2}, \ldots, F_{N}$ is a Nash equilibrium if $\forall n \in\{1, \ldots, N\}$

$$
E_{F_{1}, F_{2}, \ldots, F_{n}, \ldots, F_{N}}\left(u_{n}\right) \geq E_{F_{1}, F_{2}, \ldots, \tilde{F}_{n}, \ldots, F_{N}}\left(u_{n}\right)
$$

where \tilde{F}_{n} is any other possible cumulative distribution function for the price offered by g_{n}.

Problem's Definition

It is known (adapting Theorem 3.1 in [Navarro et al., 2003]) that $F_{1}, F_{2}, \ldots, F_{n}$ is a Nash equilibrium if and only if for any n, the expected profit $\Phi_{n}(p)$ of firm g_{n} given that it plays the pure strategy $p_{n}=p$ and the other $g_{i}^{\prime} s$ play $F_{i}^{\prime} s$, is independent of p.

Problem's Definition

It is known (adapting Theorem 3.1 in [Navarro et al., 2003]) that $F_{1}, F_{2}, \ldots, F_{n}$ is a Nash equilibrium if and only if for any n, the expected profit $\Phi_{n}(p)$ of firm g_{n} given that it plays the pure strategy $p_{n}=p$ and the other $g_{i}^{\prime} s$ play $F_{i}^{\prime} s$, is independent of p.

Thus, we have to find an explicit formula for $\Phi_{n}(p)$, which is necessary if we want to obtain the equilibrium strategies $F_{1}, F_{2}, \ldots, F_{n}$, and once the $F^{\prime} s$ are obtained, is possible to simulate the game many times to obtain an approximation to the expected aggregated supply curve.

Problem's Definition

An explicit formula for $\Phi_{n}(p)$ in the case that all firms are equal, is given in Appendix A in [von der Fehr and Harbord, 1993], as follows:

$$
\Phi_{n}(p)=\sum_{i=1}^{N} \pi_{i}\left\{\operatorname{Pr}\left[p_{n_{i-1}} \leq p \leq p_{n_{i+1}} \mid p_{n}=p\right] p+\int_{p}^{\bar{p}} \rho d F_{n_{i}}(\rho)\right\}
$$

Problem's Definition

An explicit formula for $\Phi_{n}(p)$ in the case that all firms are equal, is given in Appendix A in [von der Fehr and Harbord, 1993], as follows:

$$
\Phi_{n}(p)=\sum_{i=1}^{N} \pi_{i}\left\{\operatorname{Pr}\left[p_{n_{i-1}} \leq p \leq p_{n_{i+1}} \mid p_{n}=p\right] p+\int_{p}^{\bar{P}} \rho d F_{n_{i}}(\rho)\right\}
$$

where

$$
F_{n_{i}}(\rho)=\operatorname{Pr}\left[p_{n_{i}} \leq \rho \mid p_{n}=p\right]=\sum_{j=i-1}^{N-1}\binom{N-1}{j} F(\rho)^{j}(1-F(\rho))^{N-1-j}
$$

Problem's Definition

An explicit formula for $\Phi_{n}(p)$ in the case that all firms are equal, is given in Appendix A in [von der Fehr and Harbord, 1993], as follows:

$$
\Phi_{n}(p)=\sum_{i=1}^{N} \pi_{i}\left\{\operatorname{Pr}\left[p_{n_{i-1}} \leq p \leq p_{n_{i+1}} \mid p_{n}=p\right] p+\int_{p}^{\bar{P}} \rho d F_{n_{i}}(\rho)\right\}
$$

where

$$
F_{n_{i}}(\rho)=\operatorname{Pr}\left[p_{n_{i}} \leq \rho \mid p_{n}=p\right]=\sum_{j=i-1}^{N-1}\binom{N-1}{j} F(\rho)^{j}(1-F(\rho))^{N-1-j}
$$

and

$$
\operatorname{Pr}\left[p_{n_{i-1}} \leq p \leq p_{n_{i+1}} \mid p_{n}=p\right]=\binom{N-1}{i-1} F(p)^{i-1}(1-F(p))^{N-i}
$$

Outline

(1) Problem's Definition

(2) Objectives

(3) Results

(4) Further Work
(5) Bibliography

Objectives

General

Find an explicit formula for $\Phi_{n}(p)$ in the case $N=4$.

Objectives

General

Find an explicit formula for $\Phi_{n}(p)$ in the case $N=4$.

Specific

- Understand each component of the explicit formula of $\Phi_{n}(p)$ in the case where all firms have the same properties.

Objectives

General

Find an explicit formula for $\Phi_{n}(p)$ in the case $N=4$.

Specific

- Understand each component of the explicit formula of $\Phi_{n}(p)$ in the case where all firms have the same properties.
- Define the pure strategy space and mixed strategy space for each one of the players.

Objectives

General

Find an explicit formula for $\Phi_{n}(p)$ in the case $N=4$.

Specific

- Understand each component of the explicit formula of $\Phi_{n}(p)$ in the case where all firms have the same properties.
- Define the pure strategy space and mixed strategy space for each one of the players.
- Propose a structure of the formula for $\Phi_{n}(p)$, when $N=4$ using ideas of the previous case.

Outline

(1) Problem's Definition

(2) Objectives

(3) Results

4 Further Work

(5) Bibliography

Results

Strategy Spaces

We noted that the pure strategy space for the player g_{i} is $S_{i}=[0, \bar{p}]$, and the mixed strategy space is

$$
\Sigma_{i}=\{F:[0, \bar{p}] \rightarrow[0,1] \mid F \text { is a cumulative distribution function }\}
$$

Now, if we consider that there could be ties between prices offered, the coordinator becomes another player, and its pure strategy space is given by $S_{c}=\left\{R:[0, \bar{p}]^{N} \rightarrow\{1,2, \ldots, N\}^{2} \mid R\left(p_{1}, \ldots, p_{N}\right)\right.$ is a ranking of lowest prices $\}$

Results

$\Phi_{n}(p)$ When $N=2$

In order to get $E\left[u_{1} \mid p_{1}=p\right]$, we considered a partition of the sample space given by the events
$\varepsilon(B,\{c\}, A):=p_{b}<p_{c}<p_{a}, \forall_{b \in B}, \forall_{a \in A} \wedge \quad K_{B}<d \leq K_{B}+k_{c}$ where $K_{B}=\sum_{b \in B} k_{b}$ and $B \cup\{c\} \cup A=\{1,2\}$.

Results

$\Phi_{n}(p)$ When $N=2$

In order to get $E\left[u_{1} \mid p_{1}=p\right]$, we considered a partition of the sample space given by the events
$\varepsilon(B,\{c\}, A):=p_{b}<p_{c}<p_{a}, \forall_{b \in B}, \forall_{a \in A} \wedge \quad K_{B}<d \leq K_{B}+k_{c}$ where $K_{B}=\sum_{b \in B} k_{b}$ and $B \cup\{c\} \cup A=\{1,2\}$. Then, we got that

$$
\begin{aligned}
& E\left[u_{1} \mid p_{1}=p\right]=\left(p-c_{1}\right)\left(1-F_{2}(p)\right) \sum_{i=1}^{k_{1}} i \pi_{i}+\left(p-c_{1}\right) F_{2}(p) \sum_{i=1}^{k_{1}} i \pi_{k_{2}+i} \\
& +\left(\int_{(p, \bar{p})} k_{2}\left(\rho-c_{1}\right) G^{\prime}(\rho) d \rho+\left(G(\bar{p})-G\left(\bar{p}^{-}\right)\right)\left(\bar{p}-c_{1}\right) k_{1}\right)\left(1-F_{2}(p)\right) \sum_{i=1}^{k_{2}} \pi_{k_{1}+i}
\end{aligned}
$$

Results

$\Phi_{n}(p)$ When $\mathrm{N}=2$

In order to get $E\left[u_{1} \mid p_{1}=p\right]$, we considered a partition of the sample space given by the events
$\varepsilon(B,\{c\}, A):=p_{b}<p_{c}<p_{a}, \forall_{b \in B}, \forall_{a \in A} \wedge \quad K_{B}<d \leq K_{B}+k_{c}$ where $K_{B}=\sum_{b \in B} k_{b}$ and $B \cup\{c\} \cup A=\{1,2\}$. Then, we got that

$$
\begin{aligned}
& E\left[u_{1} \mid p_{1}=p\right]=\left(p-c_{1}\right)\left(1-F_{2}(p)\right) \sum_{i=1}^{k_{1}} i \pi_{i}+\left(p-c_{1}\right) F_{2}(p) \sum_{i=1}^{k_{1}} i \pi_{k_{2}+i} \\
& +\left(\int_{(p, \bar{p})} k_{2}\left(\rho-c_{1}\right) G^{\prime}(\rho) d \rho+\left(G(\bar{p})-G\left(\bar{p}^{-}\right)\right)\left(\bar{p}-c_{1}\right) k_{1}\right)\left(1-F_{2}(p)\right) \sum_{i=1}^{k_{2}} \pi_{k_{1}+i}
\end{aligned}
$$

where

$$
G(\rho)=\operatorname{Pr}\left[p_{2} \leq \rho \mid p_{1}<p_{2}, p_{1}=p\right]=\frac{F_{2}(\rho)-F_{2}(p)}{1-F_{2}(p)}
$$

and

$$
G\left(\bar{p}^{-}\right)=\lim _{\rho \rightarrow \bar{p}^{-}} G(\rho)
$$

Outline

(1) Problem's Definition

(2) Objectives

(3) Results

(4) Further Work

(5) Bibliography

Further Work

Using the previous idea, we will try to find $\Phi_{n}(p)$, in the cases $N=3$ and $N=4$, which could lead us to the formula of $\Phi_{n}(p)$ for any $N \in \mathbb{N}$. If we obtain that general formula, we hope to continue this research with a computacional implementation.

Outline

(1) Problem's Definition

(2) Objectives

(3) Results

4 Further Work
(5) Bibliography

Bibliography

[Navarro et al., 2003] Navarro, J., Tena, E., and Pastor, J. (2003).
Teoría de Juegos.
Out of Series. Editorial Alhambra S. A. (SP).
[von der Fehr and Harbord, 1993] von der Fehr, N.-H. M. and Harbord, D. (1993). Spot market competition in the uk electricity industry.
University of Oslo.

