Mathematical Modelling of a Deregulated Electricity Market With Different Production Capacities Research Practise 2 Progress Presentation

Juan F. García-Pulgarín¹ Carlos A. Cadavid-Moreno²

¹Mathematical Engineering EAFIT University

²Department of Mathematical Sciences EAFIT University

April 12th, 2016

2 Objectives

3 Results

5 Bibliography

2 Objectives

3 Results

5 Bibliography

• $g_1, g_2, ..., g_N$; generator firms, with production capacity k_i and operation cost c_i , $\forall i \in \{1, 2, ..., N\}$.

- $g_1, g_2, ..., g_N$; generator firms, with production capacity k_i and operation cost c_i , $\forall i \in \{1, 2, ..., N\}$.
- $K = \sum_{n=1}^{N} k_n$; total capacity of the system.

- $g_1, g_2, ..., g_N$; generator firms, with production capacity k_i and operation cost c_i , $\forall i \in \{1, 2, ..., N\}$.
- $K = \sum_{n=1}^{N} k_n$; total capacity of the system.
- $d \in \{1, ..., K\}$; random variable, which determines electricity demand for the next day, with probability distribution $\pi_i = Pr(d = i)$.

- $g_1, g_2, ..., g_N$; generator firms, with production capacity k_i and operation cost c_i , $\forall i \in \{1, 2, ..., N\}$.
- $K = \sum_{n=1}^{N} k_n$; total capacity of the system.
- $d \in \{1, ..., K\}$; random variable, which determines electricity demand for the next day, with probability distribution $\pi_i = Pr(d = i)$.
- $p_i \in [0, \bar{p}]$; unitary price offered by generator firm g_i , and \bar{p} is a regulatory maximum price.

r: {1,2,...,*N*} → {1,2,...,*N*}; ranking of lowest prices. *n_i* = *r*⁻¹(*i*), ∀*i* ∈ {1,...,*N*}; index of firm at position *i* in the ranking. *K_j* = ∑^{*j*}_{*m*=1} *k_{nm}*; sum of capacities of the first *j* firms in the ranking.

- $n_i = r^{-1}(i)$, $\forall i \in \{1, ..., N\}$; index of firm at position i in the ranking.
- $K_j = \sum_{m=1}^j k_{n_m}$; sum of capacities of the first *j* firms in the ranking.
- $F_1, F_2, ..., F_N$; cumulative distribution function for the price offered by generator firms, respectively.

- $n_i = r^{-1}(i)$, $\forall i \in \{1, ..., N\}$; index of firm at position i in the ranking.
- $K_j = \sum_{m=1}^j k_{n_m}$; sum of capacities of the first *j* firms in the ranking.
- *F*₁, *F*₂, ..., *F*_N; cumulative distribution function for the price offered by generator firms, respectively.
- \circ u_i ; utility of generator firm *i*, where

- $n_i = r^{-1}(i)$, $\forall i \in \{1, ..., N\}$; index of firm at position i in the ranking.
- $K_j = \sum_{m=1}^j k_{n_m}$; sum of capacities of the first *j* firms in the ranking.
- F₁, F₂, ..., F_N; cumulative distribution function for the price offered by generator firms, respectively.
- \circ u_i ; utility of generator firm *i*, where

$$u_i = \delta_{\rho}(i)(d - K_{\rho-1})(p_{n_{\rho}} - c_{n_{\rho}}) + \sum_{m=1}^{\rho-1} \delta_m(i)k_{n_m}(p_{n_{\rho}} - c_{n_m})$$

∘ $r : \{1, 2, ..., N\} \rightarrow \{1, 2, ..., N\}$; ranking of lowest prices.

- $n_i = r^{-1}(i)$, $\forall i \in \{1, ..., N\}$; index of firm at position i in the ranking.
- $K_j = \sum_{m=1}^j k_{n_m}$; sum of capacities of the first *j* firms in the ranking.
- $F_1, F_2, ..., F_N$; cumulative distribution function for the price offered by generator firms, respectively.
- \circ u_i ; utility of generator firm *i*, where

$$u_i = \delta_{\rho}(i)(d - K_{\rho-1})(p_{n_{\rho}} - c_{n_{\rho}}) + \sum_{m=1}^{\rho-1} \delta_m(i)k_{n_m}(p_{n_{\rho}} - c_{n_m})$$

with $\rho = max\{j : K_{j-1} < d\}$ and $\delta_m(i) = 1$ if $i = n_m$ and $\delta_m(i) = 0$, otherwise.

In order to obtain the expected aggregated supply curve in an equilibrium, we have to work in a Nash equilibrium situation, thus, adapting the definition of Nash equilibrium in finite mixed strategies given by [Navarro et al., 2003], we have that $F_1, F_2, ..., F_N$ is a Nash equilibrium if $\forall n \in \{1, ..., N\}$

In order to obtain the expected aggregated supply curve in an equilibrium, we have to work in a Nash equilibrium situation, thus, adapting the definition of Nash equilibrium in finite mixed strategies given by [Navarro et al., 2003], we have that $F_1, F_2, ..., F_N$ is a Nash equilibrium if $\forall n \in \{1, ..., N\}$

$$\mathsf{E}_{\mathsf{F}_1,\mathsf{F}_2,\ldots,\mathsf{F}_n,\ldots,\mathsf{F}_N}(u_n) \geq \mathsf{E}_{\mathsf{F}_1,\mathsf{F}_2,\ldots,\widetilde{\mathsf{F}}_n,\ldots,\mathsf{F}_N}(u_n)$$

where \tilde{F}_n is any other possible cumulative distribution function for the price offered by g_n .

It is known (adapting Theorem 3.1 in [Navarro et al., 2003]) that $F_1, F_2, ..., F_n$ is a Nash equilibrium if and only if for any n, the expected profit $\Phi_n(p)$ of firm g_n given that it plays the pure strategy $p_n = p$ and the other $g'_i s$ play $F'_i s$, is independent of p.

It is known (adapting Theorem 3.1 in [Navarro et al., 2003]) that $F_1, F_2, ..., F_n$ is a Nash equilibrium if and only if for any n, the expected profit $\Phi_n(p)$ of firm g_n given that it plays the pure strategy $p_n = p$ and the other $g'_i s$ play $F'_i s$, is independent of p.

Thus, we have to find an explicit formula for $\Phi_n(p)$, which is necessary if we want to obtain the equilibrium strategies $F_1, F_2, ..., F_n$, and once the F's are obtained, is possible to simulate the game many times to obtain an approximation to the expected aggregated supply curve.

An explicit formula for $\Phi_n(p)$ in the case that all firms are equal, is given in Appendix A in [von der Fehr and Harbord, 1993], as follows:

$$\Phi_n(p) = \sum_{i=1}^N \pi_i \{ \Pr[p_{n_{i-1}} \le p \le p_{n_{i+1}} | p_n = p] p + \int_p^{\bar{p}} \rho dF_{n_i}(\rho) \}$$

An explicit formula for $\Phi_n(p)$ in the case that all firms are equal, is given in Appendix A in [von der Fehr and Harbord, 1993], as follows:

$$\Phi_n(p) = \sum_{i=1}^N \pi_i \{ \Pr[p_{n_{i-1}} \le p \le p_{n_{i+1}} | p_n = p] p + \int_p^{\bar{p}} \rho dF_{n_i}(\rho) \}$$

where

$$F_{n_i}(\rho) = \Pr[p_{n_i} \le \rho | p_n = \rho] = \sum_{j=i-1}^{N-1} {\binom{N-1}{j}} F(\rho)^j (1 - F(\rho))^{N-1-j}$$

An explicit formula for $\Phi_n(p)$ in the case that all firms are equal, is given in Appendix A in [von der Fehr and Harbord, 1993], as follows:

$$\Phi_n(p) = \sum_{i=1}^N \pi_i \{ \Pr[p_{n_{i-1}} \le p \le p_{n_{i+1}} | p_n = p] p + \int_p^{\bar{p}} \rho dF_{n_i}(\rho) \}$$

where

$$F_{n_i}(\rho) = \Pr[p_{n_i} \le \rho | p_n = \rho] = \sum_{j=i-1}^{N-1} {\binom{N-1}{j}} F(\rho)^j (1 - F(\rho))^{N-1-j}$$

and

$$Pr[p_{n_{i-1}} \le p \le p_{n_{i+1}} | p_n = p] = {\binom{N-1}{i-1}}F(p)^{i-1}(1-F(p))^{N-i}$$

2 Objectives

3 Results

5 Bibliography

Find an explicit formula for $\Phi_n(p)$ in the case N = 4.

Find an explicit formula for $\Phi_n(p)$ in the case N = 4.

Specific

• Understand each component of the explicit formula of $\Phi_n(p)$ in the case where all firms have the same properties.

Find an explicit formula for $\Phi_n(p)$ in the case N = 4.

Specific

- Understand each component of the explicit formula of $\Phi_n(p)$ in the case where all firms have the same properties.
- Define the pure strategy space and mixed strategy space for each one of the players.

Find an explicit formula for $\Phi_n(p)$ in the case N = 4.

Specific

- Understand each component of the explicit formula of $\Phi_n(p)$ in the case where all firms have the same properties.
- Define the pure strategy space and mixed strategy space for each one of the players.
- Propose a structure of the formula for $\Phi_n(p)$, when N = 4 using ideas of the previous case.

Outline

Problem's Definition

2 Objectives

5 Bibliography

We noted that the pure strategy space for the player g_i is $S_i = [0, \bar{p}]$, and the mixed strategy space is

 $\Sigma_i = \{F : [0, \overline{p}] \rightarrow [0, 1] \mid F \text{ is a cumulative distribution function}\}$

Now, if we consider that there could be ties between prices offered, the coordinator becomes another player, and its pure strategy space is given by

 $S_c = \{R: [0, \bar{p}]^N \rightarrow \{1, 2, ..., N\}^2 \mid R(p_1, ..., p_N) \text{ is a ranking of lowest prices} \}$

Results $\Phi_n(p)$ When N=2

In order to get $E[u_1|p_1 = p]$, we considered a partition of the sample space given by the events $\varepsilon(B, \{c\}, A) := p_b < p_c < p_a, \forall_{b \in B}, \forall_{a \in A} \land K_B < d \le K_B + k_c$ where $K_B = \sum_{b \in B} k_b$ and $B \cup \{c\} \cup A = \{1, 2\}$.

Results $\Phi_n(p)$ When N=2

In order to get $E[u_1|p_1 = p]$, we considered a partition of the sample space given by the events $\varepsilon(B, \{c\}, A) := p_b < p_c < p_a, \forall_{b \in B}, \forall_{a \in A} \land K_B < d \le K_B + k_c$ where $K_B = \sum_{b \in B} k_b$ and $B \cup \{c\} \cup A = \{1, 2\}$. Then, we got that

$$E[u_1|p_1 = p] = (p - c_1)(1 - F_2(p)) \sum_{i=1}^{n_1} i\pi_i + (p - c_1)F_2(p) \sum_{i=1}^{n_1} i\pi_{k_2 + i} + \left(\int_{(p,\bar{p})} k_2(\rho - c_1)G'(\rho)d\rho + (G(\bar{p}) - G(\bar{p}^-))(\bar{p} - c_1)k_1\right) (1 - F_2(p)) \sum_{i=1}^{k_2} \pi_{k_1 + i}$$

Results $\Phi_n(p)$ When N=2

In order to get $E[u_1|p_1 = p]$, we considered a partition of the sample space given by the events $\varepsilon(B, \{c\}, A) := p_b < p_c < p_a, \forall_{b \in B}, \forall_{a \in A} \land K_B < d \le K_B + k_c$ where $K_B = \sum_{b \in B} k_b$ and $B \cup \{c\} \cup A = \{1, 2\}$. Then, we got that $E[u_1|p_1 = p] = (p - c_1)(1 - F_2(p)) \sum_{i=1}^{k_1} i\pi_i + (p - c_1)F_2(p) \sum_{i=1}^{k_1} i\pi_{k_2+i}$

$$+ \left(\int_{(p,\bar{p})} k_2(\rho-c_1) G'(\rho) d\rho + (G(\bar{p}) - G(\bar{p}^-))(\bar{p} - c_1) k_1 \right) (1 - F_2(p)) \sum_{i=1} \pi_{k_1+i}$$

where

$$G(\rho) = \Pr[p_2 \le \rho | p_1 < p_2, p_1 = p] = rac{F_2(\rho) - F_2(p)}{1 - F_2(p)}$$

and

$$G(\bar{p}^-) = \lim_{
ho o \bar{p}^-} G(
ho)$$

Outline

- Problem's Definition
- 2 Objectives

3 Results

5 Bibliography

Using the previous idea, we will try to find $\Phi_n(p)$, in the cases N = 3 and N = 4, which could lead us to the formula of $\Phi_n(p)$ for any $N \in \mathbb{N}$. If we obtain that general formula, we hope to continue this research with a computational implementation.

Outline

- Problem's Definition
- 2 Objectives

3 Results

[Navarro et al., 2003] Navarro, J., Tena, E., and Pastor, J. (2003).
 Teoría de Juegos.
 Out of Series. Editorial Alhambra S. A. (SP).

[von der Fehr and Harbord, 1993] von der Fehr, N.-H. M. and Harbord, D. (1993). Spot market competition in the uk electricity industry. *University of Oslo*.