Determinants of Teacher Evaluation Results at EAFIT University

Research Practise 2: Progress presentation

> Mónica Gómez - Lopera
> TUTOR: Francisco Zuluaga - Díaz
> CO-TUTOR: Alberto Jaramillo - Jaramillo

EAFIT University
Mathematical Engineering

April 15 ${ }^{\text {th }}, 2016$

Inspire Create Transform

Objetives

GENERAL OBJECTIVE

Identify the factors that influence teachers evaluation by students from School of Science of EAFIT University during semester 2015-1.

SPECIFIC OBJECTIVES

Making a framework of previous studies conducted on teacher evaluation. \longrightarrow In procces
Organizing database of teachers evaluation in 2015-1 and variables to consider in statistic model that will be selected.

Analyzing using descriptive statistics the results of the teacher evaluation by students from School of Science at EAFIT University in 2015-1.

Implementing a multivariate statistical model to explain the relationships between different explanatory variables and teacher evaluation results.

Done

Done

\longrightarrow In procces

Inspire Create Transform

Teacher evaluation at EAFIT University

PURPOSES

Inspire Create Transform

Teacher evaluation at EAFIT University

The teacher evaluation instrument used in EAFIT consists of 17 questions that are scored on a scale of 1-5

- Relation with other courses
- Course significance
- Evaluation difficulty level
- Relationship with students
- Students attention
- Motivation
- Teacher assistance
- Compliance class hours
- Compliance topics
- Foster autonomous learning
- Using resources
- Curriculum
- Comunicative skills stimulation
- Methodology
- Topics extension
- Conducting application activities
- Review evaluations

Inspire Create Transform

Model Variables

Dependent variable	Average per group of teacher evaluation of the courses of the School of Science at semester 2015-1
Explanatory variables	

Inspire Create Transform

Descriptive Statistics

Average teacher evaluation for degree programs

Inspire Create Transform

Descriptive Statistics

Results by question of teacher evaluation 2015-1

Inspire Create Transform

Descriptive Statistics

SCHOOL OF SCIENCE

Courses for schools
Average teacher evaluation for schools

Inspire Create Transform

Descriptive Statistics

Average teacher evaluation vs．Average grade

| Descriptive Statistics for cuantitative variables | | |
| :--- | :---: | :---: | :---: |

Source：Institutional databases and authors‘ calculations

Inspire Create Transform

Descriptive Statistics

Inspire Create Transform

Descriptive Statistics

Level

Schedule

Inspire Create Transform

Methodology

LINEAR REGRESSION MODEL

This mathematical model is used to approximate the dependency relationship between a dependent variable Y and one or more independent variables X_{i}. This model can be expressed as:

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+\beta_{p} X_{p}+\varepsilon
$$

\boldsymbol{Y} Dependent variable
$\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{\boldsymbol{p}}$ Independent or explainatory variables
$\boldsymbol{\beta}_{\boldsymbol{1}}, \boldsymbol{\beta}_{2}, \ldots, \boldsymbol{\beta}_{\boldsymbol{p}}$ parameters, measuring the influence of the explanatory variables have on the dependent variable
$\boldsymbol{\beta}_{\mathbf{0}}$ is the intersection or the term "constant", and $\boldsymbol{\varepsilon}$ is a residuals or error terms vector

Inspire Create Transform

Methodology

ORDINARY LEAST SQUARES (OLS)

This is a method for estimating the unknown parameters in a linear regression model, with the goal of minimizing the differences between the observed responses in some arbitrary dataset and the responses predicted by the linear approximation of the data.

OLS estimator for parameters vector

$$
\widehat{\beta}=\left(X^{T} X\right)^{-1} X^{T} Y
$$

\boldsymbol{Y} Dependent variable matrix
\boldsymbol{X} Explainatory variables
$\boldsymbol{\beta}$ parameters vector
Markov Gauss theorem: The OLS estimator has minimum variance

Inspire Create Transform

Methodology

TEACHER EVALUATION LINEAR REGRESSION MODEL

$$
\begin{aligned}
\text { eval }= & \beta_{0}+\beta_{1} \cdot \text { av_grad }+\beta_{2} \cdot \text { stud_att }+\beta_{3} \cdot \text { class_size }+\beta_{4} \cdot \text { level } \\
& +\beta_{5} \cdot t v+\beta_{6} \cdot h m+\beta_{7} \cdot h t+\beta_{8} \cdot s e+\beta_{9} \cdot s c+\beta_{10} \cdot s m
\end{aligned}
$$

For this model the qualitative variables are defined as dummy or binary variables.

- Average grade (av_grad)
- Student attendence (stud_att)
- Class size (class_size)
- Level (level)
- If teacher contract type is full time ($t v=1$),
- If schedule is morning ($h m=1$),
- If schedule is afternoon ($h t=1$),
- If service is Engineering ($s e=1$),
- If service is Science ($s c=1$),
- If service is Management and Economics (sm=1)

Estimation results

Results of teacher evaluation linear regression model estimated by OLS

－The results are not statistically significant for any of the explanatory variables．
－Model fit：22．62\％

Inspire Create Transform

Estimation results

Considering a new model with only two explanatory variables: average grade (av_grad) and student attendence (stud_att):

$$
\text { eval }=\beta_{0}+\beta_{1} \cdot a v_{-} \operatorname{grad}+\beta_{2} \cdot \text { stud_att }
$$

Linear regression					Number of obs $=265$		
eval	Coef.	Robust Std. Err.	t	P>\|t		[95\% Conf	Interval]
av_grade	. 0992548	. 041581	2.39	0.018	. 0173792	. 1811303	
stud_att	-. 0032538	. 0016229	-2.00	0.046	-. 0064494	-. 0000582	
_cons	3.792122	. 19099	19.86	0.000	3.416051	4.168193	

This two variables are statistically significant
$\beta_{1} \approx 0.1 \mathrm{~A}$ one-unit increase in the average grade increases in teacher evaluation 0.1
$\beta_{2} \approx 0.003 \mathrm{~A}$ one-unit increase in the student attendence increases in teacher evaluation 0.003

Inspire Create Transform

New proposals

Implement a new linear regression model whose explanatory variables will be the results for each question of teacher evaluation.

Implement other models where the dependent variable won't be the complete result of teacher evaluation, but results for some questions of interest.

Make a cluster analysis to identify common characteristics among groups of teachers evaluated.

Inspire Create Transform

Thanks for your attention

QUESTIONS

Inspire Create Transform

