Determinants of Teacher Evaluation Results at EAFIT University

Research Practise 2: Progress presentation

Mónica Gómez - Lopera

TUTOR: Francisco Zuluaga - Díaz CO-TUTOR: Alberto Jaramillo - Jaramillo

EAFIT University Mathematical Engineering April 15th, 2016

Objetives

GENERAL OBJECTIVE

Identify the factors that influence teachers evaluation by students from School of Science of EAFIT University during semester 2015-1.

SPECIFIC OBJECTIVES

Teacher evaluation at EAFIT University PURPOSES

Teacher evaluation at EAFIT University

The teacher evaluation instrument used in EAFIT consists of 17 questions that are scored on a scale of 1-5

- Relation with other courses
- Course significance
- Evaluation difficulty level
- Relationship with students
- Students attention
- Motivation
- Teacher assistance
- Compliance class hours
- Compliance topics

- Foster autonomous learning
- Using resources
- Curriculum
- Comunicative skills stimulation
- Methodology
- Topics extension
- Conducting application activities
- Review evaluations

Model Variables

Dependent variable	Average per group of teacher evaluation of the courses of the School of Science at semester 2015-1					
Explanatory variables						
Average grade	Average final grade students of the course.					
Teacher contract type	Full time or partial time					
Service	Management and Economics, Engineering, Science and Humanities					
Schedule	Morning, afternoon or evening					
Level	Basic (1 st -3 th semester), Profesional (4 th -7 th semester), Elective(8 th -10 th semester)					
Class size	Number of students for each group					
Student attendance	 Less than 20% 20- 50% 50-70% Over 70% 					

Average teacher evaluation for degree programs

Source: Institutional databases and authors' calculations

Results by question of teacher evaluation 2015-1

Source: Institutional databases and authors' calculations

SCHOOL OF SCIENCE

Courses for schools

Average teacher evaluation for schools

Source: Institutional databases and authors' calculations

	Teacher evaluation	Average grade	Class size
Mean	3.93	3.50	21.5
Std. Dev.	0.26	0.46	8.7
Min.	2.66	2.18	3
Max.	4.78	4.94	37

Descriptive Statistics for cuantitative variables

Average teacher evaluation vs. Average grade

Source: Institutional databases and authors' calculations

Source: Institutional databases and authors' calculations

Source: Institutional databases and authors' calculations

Methodology

LINEAR REGRESSION MODEL

This mathematical model is used to approximate the dependency relationship between a dependent variable Y and one or more independent variables X_i . This model can be expressed as:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \varepsilon$$

Y Dependent variable $X_1, X_2, ..., X_p$ Independent or explainatory variables $\beta_1, \beta_2, ..., \beta_p$ parameters, measuring the influence of the explanatory variables have on the dependent variable

 $m{eta}_0$ is the intersection or the term "constant", and $m{\epsilon}$ is a residuals or error terms vector

Methodology

ORDINARY LEAST SQUARES (OLS)

This is a method for estimating the unknown parameters in a linear regression model, with the goal of minimizing the differences between the observed responses in some arbitrary dataset and the responses predicted by the linear approximation of the data.

OLS estimator for parameters vector

$$\widehat{\boldsymbol{\beta}} = \left(\boldsymbol{X}^T \boldsymbol{X}\right)^{-1} \boldsymbol{X}^T \boldsymbol{Y}$$

Y Dependent variable matrixX Explainatory variables

 $oldsymbol{eta}$ parameters vector

Markov Gauss theorem: The OLS estimator has minimum variance

Methodology

TEACHER EVALUATION LINEAR REGRESSION MODEL

 $eval = \beta_0 + \beta_1 \cdot av_grad + \beta_2 \cdot stud_att + \beta_3 \cdot class_size + \beta_4 \cdot level$

 $+\beta_5 \cdot tv + \beta_6 \cdot hm + \beta_7 \cdot ht + \beta_8 \cdot se + \beta_9 \cdot sc + \beta_{10} \cdot sm$

For this model the qualitative variables are defined as dummy or binary variables.

- Average grade (*av_grad*)
- Student attendence (*stud_att*)
- Class size (*class_size*)
- Level (*level*)
- If teacher contract type is full time (tv=1),
- If schedule is morning (*hm*=1),
- If schedule is afternoon (*ht*=1),
- If service is Engineering (*se*=1),
- If service is Science (*sc*=1),
- If service is Management and Economics (*sm*=1)

Estimation results

Results of teacher evaluation linear regression model estimated by OLS

Linear regres	sion				Number of obs R-squared	= 265 = 0.2262
eval	Coef.	Robust Std. Err.	t	₽> t	[95% Conf.	Intervall
					•	
av_grade	0305093	.0527255	-0.58	0.563	134344	.0733255
stud_att	0013437	.0020803	-0.65	0.519	0054405	.0027531
class_size	.002505	.0019835	1.26	0.208	0014013	.0064112
level	0079032	.0158222	-0.50	0.618	0390627	.0232562
tv	.0030656	.0366971	0.08	0.933	0692038	.0753349
hm	.012384	.0414794	0.30	0.766	0693034	.0940713
ht	.0118858	. 0409003	0.29	0.772	0686612	.0924328
se	1964094	. 1086397	-1.81	0.072	4103587	.0175399
SC	.13917	. 0987588	1.41	0.160	0553204	.3336603
sm	1000516	.0983374	-1.02	0.310	2937121	.093609
_cons	4.165332	. 2209887	18.85	0.000	3.730128	4.600535

- The results are not statistically significant for any of the explanatory variables.
- Model fit: 22.62%

Estimation results

Considering a new model with only two explanatory variables: average grade (*av_grad*) and student attendence (*stud_att*):

 $eval = \beta_0 + \beta_1 \cdot av_grad + \beta_2 \cdot stud_att$

Linear regression

Number of obs = 265

eval	Coef.	Robust Std. Err.	t	₽> t	[95% Conf.	Interval]
av_grade	.0992548	.041581	2.39	0.018	.0173792	.1811303
stud_att	0032538	.0016229	-2.00	0.046	0064494	0000582
_cons	3.792122	.19099	19.86	0.000	3.416051	4.168193

This two variables are statistically significant

 $\beta_1 \approx 0.1$ A one-unit increase in the average grade increases in teacher evaluation 0.1

 $\beta_2 \approx 0.003$ A one-unit increase in the student attendence increases in teacher evaluation 0.003

New proposals

Implement a new linear regression model whose explanatory variables will be the results for each question of teacher evaluation.

Implement other models where the dependent variable won't be the complete result of teacher evaluation, but results for some questions of interest.

> Make a cluster analysis to identify common characteristics among groups of teachers evaluated.

Thanks for your attention

QUESTIONS