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Intuition on what we want to do

“Many empirical analyses focus on estimating the structural, causal,
or treatment effect of some variable on an outcome of interest. For
example, we might be interested in estimating the causal effect of
some government policy on an economic outcome such as
employment.(...) A problem empirical researchers face when relying
on a conditional-on-observables identification strategy for estimating
a structural effect is knowing which controls to include.” [Belloni
et al., 2014, pp. 608-609].
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Problem statement

Consider the following structure [Belloni et al., 2014]:

yi = αdi + x
′

i βg + εi (1)

di = x
′

i βm + ζi (2)

where yi is the response, βg , βm are the structural and treatments
effects of variables xi respectively, di is the treatment, α is the
treatment effect and εi , ζi are stochastic errors such that

E [εi | xi , di ] = E [ζi | xi ] = 0
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Previous works

Belloni et al. [2014] showed that assumptions over the distribution of√
n(α− α̂) are not always true via simulation:

Figure: Theorical and simulated distribution, taken from Belloni et al.
[2014].
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Previous works: LASSO

The Lasso estimator as introduced in Tibshirani [1996] is an
optimization problem which solves the following:

β∗ = min
β∈Rp

n∑
i=1

[di − x
′

i βm]2 + λ

p∑
j=1

| βj | (3)

where λ is a penalization coefficient.
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Previous works: Post double LASSO

Post double LASSO estimator is a three stages procedure:

1 Proceed with LASSO estimator on the treatment effect.

2 Proceed with LASSO estimator on the structural equation but
without including the treatment.

3 Proceed with a linear regression on the structural equation using
the treatment and the union of variables that were selected on
previews stages.
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MC 3

Markov chain Monte Carlo model composition (MC3) is a Bayesian
methodology which uses a stochastic search comparing different
models by its posterior model probability.
As in Simmons et al. [2010], let M = {M1,M2, ...Mm} the set of
models under consideration, and d the observed data as in (2).
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MC 3

The posterior model probability for model Mj is defined as

P(Mj | d ,M) =
P(d | Mj)π(Mj)∑m
i=1 P(d | Mi)π(Mi)

∀j = 1, 2, ...m

where P(d | Mj) is the integrated likelihood of the model Mj and
π(Mj) is the prior probability that Mj is the true model.
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MC 3 with nonlocal(NL) priors

The idea of a nonlocal (to 0) prior is to effectively eliminate models
with unnecessary explanatory variables, for instance consider the
following nonlocal prior proposed by Johnson and Rossell [2012]:

π(β | τ, σ2, r , Ap) =dp(2π)−p/2(τσ2)−rp−p/2

| Ap |1/2 exp

{
− 1

2τσ2
β′Apβ

} p∏
i=1

β2r
i (4)

where τ, r , Ap are hyper-parameters for the prior.
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General objective

Propose a double post MC3 estimators based on local and non local
prior distributions, and compare its performance with the frequentist
counterpart under different multicollinearity degrees.
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Specific objectives

Implement the post double selection and MC3 on simulations

exercises. X
Gather real information as in Donohue III and Levitt [2001], and
use both methodologies.

Compare both methodologies and analyse how they perform
based on simulation and real cases.
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Model specification

Considering (2) and (1) we define dim(xi) = 40 , α = 0, βg such that
there are only 8 non zero coefficients and βm with only 4 non zero
coefficients.
We also define:

xi1 = N10(0,Σ)

xi2 = N5(0, I )

xi3 = xi ,j = fj(xi1, xi2) ∀j ∈ {1, 2, ..., 25}

where fj is a non linear function and define.

xi = (xi1, xi2, xi3)
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Defining different levels of Multillinearity

We define three different types of experiments with different Σ to
generate xi1,

1 Σ so that σij ∈ (0.5, 0.9)

2 Σ so that σij ∈ (0, 0.5)

3 Σ = I10

we also set the signal to noise ratio equals to 1 in both, the structural
and the treatment equation.
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Defining different levels of multillinearity

Multicollinearity level
Measure Type 1 Type 2 Type 3
VIF 99.40 4.26 2.86
Condition number 111.84 20.71 12.72

As expected the condition number and the variance inflation factor
(VIF) for the first case is clearly higher than the others due to its
higher multicollinearity given by the definition of Σ in that case.
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Type 1 results

 Estimated Treatment effect using post double T−statistic
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Type 1 results

 Estimated Treatment effect using post double LASSO
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Type 1 results

 Estimated Treatment effect using post double L−priors
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Type 1 results

 Estimated Treatment effect using NL−Priors
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Type 1 results

 Estimated Treatment effect using post double ORACLE

D
en

si
ty

−6 −4 −2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

Mean
Teorical distribution
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Type 2 results

 Estimated Treatment effect using post double T
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Type 2 results

 Estimated Treatment effect using post double LASSO
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Type 2 results

 Estimated Treatment effect using post double L−priors
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Mateo Graciano-Londoño and Andrés Raḿırez-Hassan Fighting Multicollinearity in Double Selection



Problem statement Context Methodology Objectives Simulation exercises Results References

Type 2 results

 Estimated Treatment effect using NL−Priors
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Type 2 results

 Estimated Treatment effect using post double ORACLE
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Type 3 results

 Estimated Treatment effect using post double T−statistic
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Type 3 results

 Estimated Treatment effect using post double LASSO
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Type 3 results

 Estimated Treatment effect using post double L−priors
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Type 3 results

 Estimated Treatment effect using NL−Priors
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Type 3 results

 Estimated Treatment effect using post double ORACLE
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Summary

Multicollinearity level
Procedure Type 1 Type 2 Type 3
Post double T 0.146 0.0699 0.0495
Post double LASSO 0.1311 0.0732 0.0661
Post double L-prior 0.0511 0.0488 0.0513
Post double NL-prior 0.0551 0.0517 0.0560
Post double ORACLE 0.0551 0.0517 0.0560

Table: Rejection rates (at 0.05) for different set of data based on 8000
Monte Carlo simulation.
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Summary

Note that even with a high multicollinearity level Bayesian procedures
has 0.05 rejection rate which is the teorical expected value.

Also it is impresive that NL-prior selection leads to the same results
as the non plausible procedure post double ORACLE.
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Any questions?
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