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Abstract

The selection of a time series model is a well studied problem, because of its
importance in forecasting problems. Different model selection criteria have
been used, and recently, studies use them combined to find an adaptation
of the criteria to reach accuracy. This paper implement some multivariate
statistic techniques to find a new adaptation of a weighted criterion for model
selection of time series.

Keywords: Model selection criteria, Principal Component Analysis,
Analytic Hierarchy Process

1. Introduction

Forecasting problems involve predicting events time periods into the fu-
ture and it can be found in different fields. Most forecasting problems involve
the use of time series data [1, 2]. In time series forecasting the interest is to
discover, with some margin of error, future values of a signal or a function of
time, Xt, based on its past values and considering its randomness or fluctu-
ating properties [3].

Although it is difficult to identify the type of a time series, in practice
they are divided into two general groups: linear and nonlinear. The work by
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Box and Jenkins [4] in the 70s, gave way to an important effort in the study
and application of construction of linear models by mathematical models that
represent autoregressive processes (AR), moving average process (MA), and
their combination. Many successful practical experiences have shown that
this approach can represent the dynamics of many series of real time, which
popularized this class of models both academic and professional fields [5, 6].
However, it has also been found that many real time series have non-linear
behavior [2, 7, 8], for which the Box and Jenkins approximation is insufficient
to represent these dynamics [5].

Formally, a model of pth-order of nonlinear time series is defined as [9, 10]

Xt = f(Ft−1;φ) + at , (1)

where f is a known nonlinear function of past Xt’s and φ is a p × 1 vector
of parameters. Let {Xt} be a stationary and ergodic time series, with Ft

the σ-field generated by {Xt,Xt−1, . . .}. The function f is assumed to have
continuous second order derivatives almost surely. The noise process {at} is
assumed to be independent, with mean zero, variance σ2

a, and finite fourth
order moment. It is further assumed that (1) is invertible or equivalently,
{at} is measurable with respect to Ft.

While there is no single methodology for modeling phenomena that have
only temporary data for forecasting in the time series, they all follow the key
steps of specification, estimation, validation and prognosis. Abraham and
Ledolter [11] specify that in general modeling methodology of time series for
forecasting consists of two stages: Model-building and forecasting (Figure 1).

Stages to construct a time series model for forecasting [11]

Phase 1: Model-Building Phase

A model for forecasting is constructed from measurements of observations
and theory (economics, among others) available. In some cases this theory
may suggest certain structures of the model; in other cases, this theory can
not exist or be incomplete, and the available data should be used to specify
an appropriate model. To choose the structure of forecasting model, the
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Figure 1: Conceptual framework of a forecasting system. Taken from [11]

following criteria must be keep:

• The degree of accuracy required.

• The desired forecast horizon.

• The maximum tolerable cost for forecasts.

• The degree of complexity required.

• Data availability.

Moreover, the proposed model generally contains unknown parameters to
be estimated in the next step using conventional estimation methods. Finally,
it is needed to inspect if the model is appropriate. This should be done to
avoid inadequate variables in the model and have an incorrect specification of
the functional relationship. If the model is not satisfactory, it must be speci-
fied again, and the iterative cycle model specification-estimation-forecasting
should be repeated until a satisfactory model is found. This is where the
model selection criteria play an important role (Table 1).
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Phase 2: Forecasting Phase

At this stage the final model is used for forecasting. The model struc-
ture and parameters must remain constant during the forecast period. The
stability of the forecasting model can be assessed by checking against new
observations. At this point, the forecast error is calculated to detect changes
in the model.

Compared to the linear case, the nonlinear time series have been little ex-
plored and theory is not sufficient to uncover nonlinearities [12]. One of the
most critical issues is to select the appropriate forecasting nonlinear model
[2]. The statistical tool used for the evaluation of the accuracy of a selected
models are the models selection criteria, which allow given a set of rival mod-
els, select the “best” among them [13].

In this research project we propose a weighted criterion for selecting mod-
els of nonlinear time series, using statistical techniques that consider the in-
herent characteristics of the series to determine the weights.

This paper is organized in the following way. Important aspects and
some revision of literature is presented in Section 2. The methodology for
the obtainment of the data and the use of the statistical techniques are
described in Section 3. In Section 4, are presented the results and they are
finally discussed in Section 5. Future work is discussed in Section 6.

2. Important aspects

2.1. Model selection criteria

Much of modern scientific enterprise is concerned with the question of
model choice, and so it should not come as a surprise that many approaches
have been proposed over the years for dealing with this issue [14]. Model
selection criteria take account of the goodness-of-fit of a model and the num-
ber of parameters used to achieve that fit [15].

While there are in the literature several decision criteria, most based on
the distance between the actual values and their respective predicted values,
they are based on assumptions that sometimes are not satisfied by the data
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under study, and also have some disadvantages that are not considered in
practice (see Table 1).

Recently, it has been shown that a good choice to take advantage of the
different criteria is through a weighted average of them. However the pro-
posed ways to calculate the weights have not been entirely successful [8, 16]
and the criteria are applied without validating the assumptions required,
leading to bad decisions. In addition, in the literature there are no guide-
lines on which criteria to use, bearing in mind the inherent behavior of the
time series.

2.2. Principal component analysis

Principal Components Analysis (PCA) is a procedure for identifying a
smaller number of uncorrelated variables, called “principal components”,
from a large set of data, reducing the number of variables and avoiding
multicollinearity. The goal of principal components analysis is to explain the
maximum amount of variance with the fewest number of principal compo-
nents, which are linear combinations of the original variables [17]. Principal
components analysis is commonly used in the social sciences, market research,
and other industries that use large data sets [18].

2.3. Analytic hierarchy process

The Analytic Hierarchy Process (AHP) is a theory of measurement through
pairwise comparisons and relies on the judgements of experts to derive pri-
ority scales. The comparisons are made using a scale of absolute judgements
that represents, how much more, one element dominates another with respect
to a given attribute [19].

As said before, pairwise comparisons are the fundamental basis of AHP.
The method uses a scale of 1 to 9 for assessing the relative preferences be-
tween two elements as showed in Table 2.
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Also, as shown in Equation 2, the priority matrix A must satisfy:

• The diagonal is 1

• The lower triangular matrix is filled using aji = 1/aij

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 a12 ⋯ a1n
1/a12 1 ⋯ a2n
⋮ ⋮ ⋱ ⋮

1/a1n 1/a2n ⋯ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(2)

3. Methodology

3.1. Simulation study

In order to obtain experimental data used in this study, three time series
models were considered:

• Nonlinear Autoregressive Model (NAR) [20]: yt = 0.7yt−1−0.017y2t−1+εt

• Linear Autoregressive Model (AR): yt = 0.67yt−1 − 0.41yt−2εt

• Generalized Autoregressive Conditional Heteroskedastic (GARCH) [21]:
yt =
√
htεt , with h2t = 0.00002281 + 0.0593y2t−1 + 0.901h2t−1

The parameters of each model were modified 14 times1, so that different
distance measurements between the estimate and the parameter were consid-
ered, as well as various measures to the selection criteria. Figures 2, 3 and 4
show the original trajectory of the time series and some of the modifications.

After evaluating each of the estimated variations with the model selection
criteria presented in Table 1, a database with i rows (i models or variations)
and eight columns (each corresponding to a criterion) is obtained. Then the
values are standardized for avoid the problem of the effect of the different
units of measure. To standardize the following criteria were used:

1For each model the first variations are characterized by being closer estimations of the
parameters.
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Figure 2: Variations of the model yt = 0.7yt−1 − 0.017y2t−1 + εt

Figure 3: Variations of the model yt = 0.67yt−1 − 0.41 ∗ yt−2εt

C∗
i =

Ci −min(C)
max(C) −min(C) (3)

where C is any of the eight criteria shown in Table 1, Ci is the criterion
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Figure 4: Variations of the model yt =
√
htεt with h2

t = 0.00002281 + 0.0593y2t−1 + 0.901h2
t−1

value in the ith model, max(C) and min(C) denote the maximum and the
minimum value obtained for the criterion.

3.2. Model selection criterion using PCA

The method used to estimate the optimal weights of the proposed crite-
rion for selecting time series models under the PCA is as follows:

1. Apply a PCA to the database obtained in Section 3.1.

2. Define the number of partnerships between selection criteria using the
Biplot chart.

3. Apply the PCA to each found association and determine the weights
associated with each selection criterion.

4. Calculate the ratio between the index and its ideal value. This applies
only in cases where the ideal value is nonzero.

3.3. Model selection criterion using AHP

According to (2) and Table 2, was created a matrix of importance for the
model selection criteria according to the frequency of use of each method in
the literature to obtain the weighted model:

8



SSE RMSE MAPE MAE ME DA MDA Sign AIC

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1 7 5 3 7 5 9 10 2 SSE
1/7 1 1/3 1/5 1/2 5 9 7 1/9 RMSE
1/5 3 1 1/3 3 5 7 9 1/5 MAPE
1/3 5 3 1 2 2 3 3 1/3 MAE
1/7 2 1/3 1/2 1 1/2 3 5 1/10 ME
1/5 1/5 1/5 1/2 2 1 5 1/3 1/9 DA
1/9 1/9 1/7 1/3 1/3 1/5 1 1/2 1/10 MDA
1/10 1/7 1/9 1/3 1/5 3 2 1 1/7 Sign
1/2 9 5 3 10 9 10 7 1 AIC

4. Results

Before applying the statistical methods to the obtained data, a correlation
analysis was performed between the selection criteria and it was shown that
the AIC, BIC, AICC are extremely correlated, therefore we just take in
account only the AIC criterion.

4.1. Model selection criterion using PCA

Initially all variations of the three models were considered in the same
database and the PCA was applied. In the graph Biplot groups defined by
the types of AR, NAR and GARCH were obtained (see Figure 5).

Based on this, was decided to apply the methodology proposed in Section
3.2 to each model under study. The results obtained were as follows.

4.1.1. NAR Model

For this nonlinear model it was found that MDA and ME criteria are
not significant, because they have a very low weight in the components. In
addition, two groups of associations were identified (see Figures 6 and 7).

Group 1: SSE, RMSE, MAPE, MAE and AIC

Group 2: DA and Sign.

which led to the following weighted selection criteria:
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Figure 5: PCA general

Figure 6: PCA rotations of NAR model

PC1 = 0.4744SSE + 0.4765RMSE + 0.5084MAPE + 0.4897MAE + 0.2225AIC

PC2 = 0.5201DA + 0.4799Sign

(4)

Note that the first criterion PC1 consists of measures associated with the
error squared and PC2 by criteria of direction of models.

4.1.2. AR Model

For this linear model it was found that MDA criteria, opposite to the re-
sult obtained with the NAR model, is significant, but ME criterion also have
a very low weight in the components. In addition, two groups of associations
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Figure 7: PCA NAR

were identified (see Figures 8 and 9).

Group 1: SSE, RMSE, MAPE, MAE, MDA and AIC

Group 2: DA and Sign.

Figure 8: PCA rotations of AR model

PC1 = 0.3997SSE + 0.4323RMSE + 0.4607MAPE + 0.4338MAE + 0.4587MDA + 0.2062AIC

PC2 = 0.4584DA + 0.5416Sign

(5)
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Figure 9: PCA AR

For the AR model is significant the distance measure MDA, and is asso-
ciated with the selection criteria SSE, MAPE, RMSE and AIC. However the
second indicator, as in the case of NAR, is also formed by the DA and the
Sign criterion; of course with different weights to the NAR nonlinear model.

4.1.3. GARCH Model

For this nonlinear model it was found the same behavior as the NAR
nonlinear model. And two groups of associations were identified (see Figures
10 and 11).

Group 1: SSE, RMSE, MAPE, MAE and AIC

Group 2: DA and Sign.

PC1 = 0.4055SSE + 0.4498RMSE + 0.4511MAPE + 0.4544MAE + 0.4726AIC

PC2 = 0.5912DA + 0.4088Sign

(6)

4.2. Model selection criterion using AHP

Based on the matrix established in Section 3.2, the AHP methodology
was applied. With this measure is possible to set a weight for each selection
criteria considered in this paper. The weighted selection criterion obtained
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Figure 10: PCA rotations of GARCH model

Figure 11: PCA GARCH

is as follows:

CAHP = 0.3098SSE + 0.0573RMSE + 0.1046MAPE + 0.1101MAE

+ 0.0483ME + 0.0339DA + 0.0162MDA + 0.0248Sign + 0.2950AIC

(7)

In this case the weights of the criteria are directly proportional to their
frequency of use.
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4.2.1. Calculation of the weighted selection criteria

Note that in general the selection criteria proposed using PCA have the
following decision rule:

Group 1: If PC1 Ð→ 0 then the estimates obtained are good.

Group 2: If PC2 Ð→ 1 then the estimates obtained are good.

Also, for the AHP rule it is as follows: If CAHP Ð→ 0 then the estimates
obtained are good.

Moreover, using standardized database and the expressions obtained in
Sections 4.1 and 4.2, Table 3 is formed.

5. Discussion and Conclusion

Were proposed two methodologies for selection criteria of linear models
and nonlinear time series using PCA and AHP techniques. This allows us to
state the following:

• It is important to highlight that AIC, BIC and AICC criteria are ex-
tremely correlated, so when using more than one of them a multi-
collinearity problem is committed. For this reason it is not necessary
to use more than one of them in the weighted methods. This leads to ex-
amine in the literature some proposals for development of new weighted
selection criteria that do not consider this fact (see for example [8, 16]).

• When analyzing the associations made by groups after performing prin-
cipal component analysis by type of model, you get that nonlinear
models GARCH and NAR show the same configurations in the groups
although the weights of each criterion vary between them.

• While analyzing the structure of the obtained groups, it can be noted
that the criteria belonging to the first group are related to measurement
of the error between the actual and the estimated model and those be-
longing to the second group are related to the analysis of direction of
the models.

• While the AHP technique is easy to use, the PCA technique yields bet-
ter results in terms of the interpretation of results and group formation.
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6. Future work

Additional work will be required to generalize this groups according to
the linearity of the studied data. It must be proved with different time series
models.
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Model selection
criterion

Definition

SSE
T

∑
i=1
(yi − ŷi)2

RMSE

√
1

T
SSE

AIC log (SSE
T
) + 2m

T

AICC log (SSE
T
) + 2m

T −m − 1

BIC log (SSE
T
) + m log(T )

T

MAPE
1

T

T

∑
i=1
∣(yi − ŷi)

yi
∣

MAE
1

T

T

∑
i=1
∣(yi − ŷi)∣

ME
1

T

T

∑
i=1
(yi − ŷi)

DA

1

T

T

∑
i=1
ai, where

a1 = {
1 if (yi+1 − yi)(ŷi+1 − yi) > 0
0 ioc

MDA

T−1
∑
i=1

Di

T − 1
, where Di = (Ai − Fi)2

Sign

1

T

T

∑
i=1
zi, where

z1 = {
1 if (yi+1)(ŷi+1) > 0
0 ioc

Table 1: Model selection criteria, where m is the number of parameters and T the number
of observations.
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Intensity of
Importance

Definition

1 Equal importance
3 Moderate importance
5 Strong importance
7 Very strong or demonstrated importance
9 Extreme importance

Table 2: Scale of importance for the AHP
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PCA
AHP

Group 1 Group 2

NAR

0 1 0.0838
0.4332 0.8263 0.3867
0.1690 1 0.2841
0.4518 0.8416 0.4012
0.6614 0.7976 0.4777
0.6232 0.7212 0.4237
0.4447 0.8435 0.3959
2.0119 0.2172 0.8666
2.1664 0.1224 0.9386
1.7677 0.4086 0.4800
1.2595 0.2882 0.6269
1.0868 0.4008 0.5701
1.8446 0.2533 0.7558
1.1722 0.3282 0.5979

AR

0 1 0.0967
0.1961 0.9672 0.3174
0.3343 0.8503 0.3694
0.3024 0.8880 0.3586
0.5190 0.7761 0.4133
0.3337 0.8812 0.3609
0.5110 0.7847 0.4113
1.5483 0.1447 0.5933
0.6844 0.6400 0.4220
0.5455 0.6746 0.4024
0.9595 0.4147 0.4891
1.6876 0.3287 0.7287
2.3914 0.0155 0.9265
0.8950 0.4712 0.4518

GARCH

0.1895 0.7850 0.1543
0.2913 0.8388 0.2660

0 0.8925 0.0778
0.1150 0.8925 0.1668
0.9564 0.6775 0.5617
0.0261 0.7850 0.0966
0.1641 1 0.2082
0.3009 0.6775 0.2630
0.5420 0.6775 0.3810
0.7811 0.4088 0.4400
0.8511 0.4088 0.4687
2.9490 0 0.8930
0.9731 0.6775 0.5839
0.9920 0.6775 0.5884

Table 3: Values obtained with the methodologies
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