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Goal

Computer-Aided Diagnosis System

To develop a computer system which can assist medical per-
sonnel with the early detection of tumors based on mammog-
raphy images.
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Feature Extraction - AlexNet

Source: Krizhevsky et al. (2012)



SVM

"Kernel machines are used to transform non-linearly separable sets

into a higher dimension space in which they are linearly separable."

Image retrieved from https://goo.gl/E8UywE



CALTECH-101



Data

# Compiled by California Institute of Technology

# RGB and B&W pictures

# 101 different categories

Image retrieved from https://goo.gl/587ZkJ



Results - Caltech + VGG

Target

Airplanes Faces Bikes Watches Total

O
ut

pu
t

Airplanes 97.5 0 0 2.5 97.5

Faces 0 97.5 0 2.5 97.5

Bikes 0 0 100 0 100

Watches 0 0 0 100 100

Total 100 100 100 95.24 98.75



Results - Caltech + AlexNet

Target

Airplanes Faces Bikes Watches Total

O
ut

pu
t

Airplanes 97.5 0 0 2.5 97.5

Faces 0 100 0 0 100

Bikes 0 0 100 0 100

Watches 0 0 0 100 100

Total 100 100 100 97.56 99.38



MINI-MIAS



Data

# United Kingdom National Breast Screening Programme [6]

# 322 mammograms - 3 categories

# 1024 × 1024 pixels
Source: Suckling et al. (1994)



Data Preprocessing

Original Cropped Resized

Source: Suckling et al. (1994)



Results - mini-MIAS + AlexNet

Target

Benign Malign Normal Total

O
ut

pu
t

Benign 36.53 48.12 15.35 36.53

Malign 27.39 56.12 16.49 56.12

Normal 31.34 56.29 12.36 12.36

Total 38.35 34.96 27.97 35.01



Unbalanced Data

Benign Normal Malign

19%

65%
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Data Augmentation

Source: Suckling et al. (1994)



Results - Augmented mini-MIAS + AlexNet

Target

Benign Malign Normal Total

O
ut

pu
t

Benign 61.79 20.33 17.87 61.79

Malign 18.79 61.75 19.46 61.75

Normal 22.88 20.67 56.46 56.46

Total 59.73 60.10 60.20 60.01



Results - Augmented mini-MIAS + VGG

Target

Benign Malign Normal Total

O
ut

pu
t

Benign 63.63 18.45 17.92 63.63

Malign 17.86 64.37 17.77 64.37

Normal 16.91 17.54 65.55 65.55

Total 64.66 64.14 64.75 64.52
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