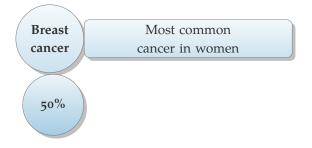
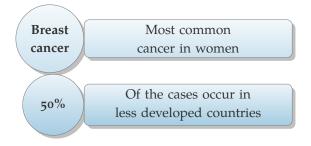
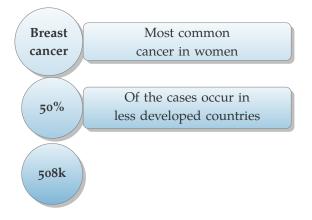
DETECTION AND DIAGNOSIS OF BREAST TUMORS USING DEEP CONVOLUTIONAL NEURAL NETWORKS FINAL PRESENTATION

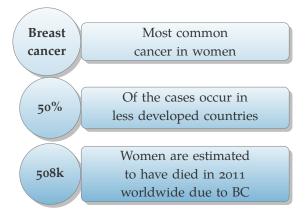
J.D. Gallego-Posada[†] D.A. Montoya-Zapata^{*} O.L. Quintero-Montoya[‡]

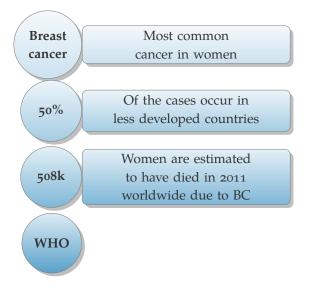
{[†]jgalle29, *dmonto39, [‡]oquinte1} (at) eafit (dot) edu (dot) co

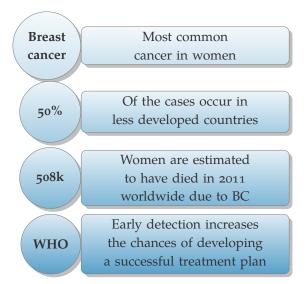


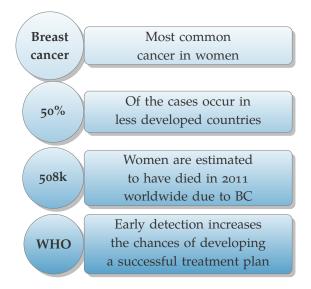

June 3, 2016


INTRODUCTION

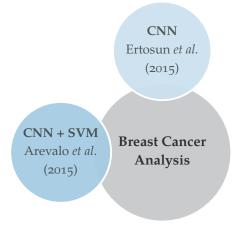


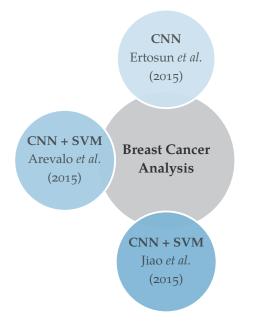


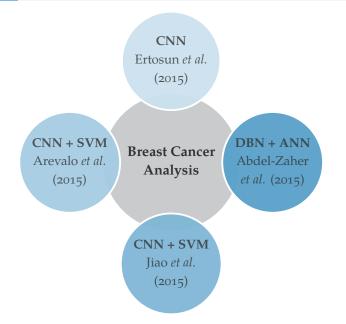




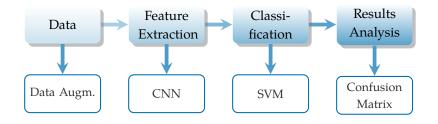
Source: World Health Organization (2016)

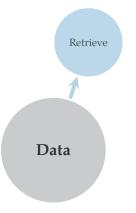

Computer-Aided Diagnosis System

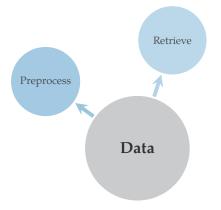

To develop a computer system which can assist medical personnel with the early detection of tumors based on mammography images.

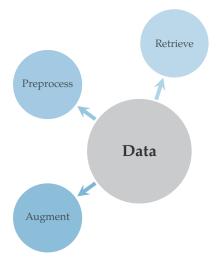

Related Work

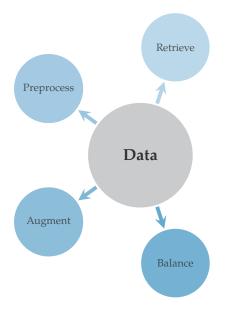
Breast Cancer Analysis CNN Ertosun *et al.* (2015)

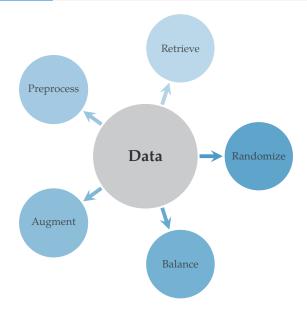

Breast Cancer Analysis

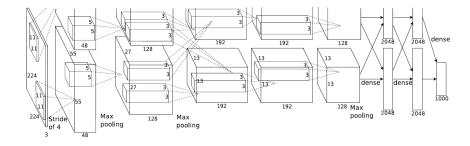


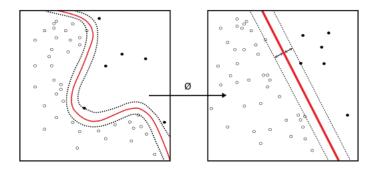

METHODOLOGY











Feature Extraction - AlexNet

Source: Krizhevsky et al. (2012)

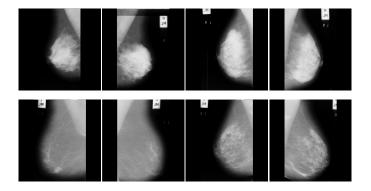
"Kernel machines are used to transform **NON-LINEARLY** separable sets into a **HIGHER DIMENSION** space in which they are linearly separable."

Image retrieved from https://goo.gl/E8UywE

CALTECH-101

- Compiled by California Institute of Technology
- RGB and B&W pictures
- 101 different categories

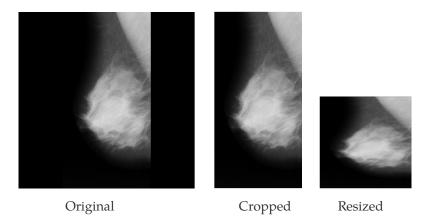
Image retrieved from https://goo.gl/587ZkJ


		Inger				
		Airplanes	Faces	Bikes	Watches	Total
Output	Airplanes	97.5	0	0	2.5	97.5
	Faces	0	97.5	0	2.5	97.5
	Bikes	0	0	100	0	100
	Watches	0	0	0	100	100
	Total	100	100	100	95.24	98.75

Target

		Iniger				
		Airplanes	Faces	Bikes	Watches	Total
Output	Airplanes	97.5	0	0	2.5	97.5
	Faces	0	100	0	0	100
	Bikes	0	0	100	0	100
	Watches	0	0	0	100	100
	Total	100	100	100	97.56	99.38

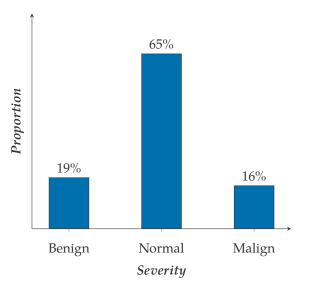
Target


MINI-MIAS

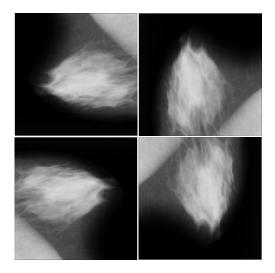
- United Kingdom National Breast Screening Programme [6]
- 322 mammograms 3 categories
- 1024 × 1024 pixels

Source: Suckling et al. (1994)

Data Preprocessing



Source: Suckling *et al.* (1994)


		Target					
		Benign	Malign	Normal	Total		
Output	Benign	36.53	48.12	15.35	36.53		
	Malign	27.39	56.12	16.49	56.12		
	Normal	31.34	56.29	12.36	12.36		
	Total	38.35	34.96	27.97	35.01		

.

Unbalanced Data

Data Augmentation

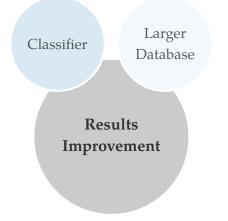
Source: Suckling et al. (1994)

Results - Augmented mini-MIAS + AlexNet

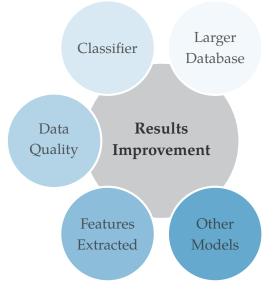
		Target				
		Benign	Malign	Normal	Total	
Output	Benign	61.79	20.33	17.87	61.79	
	Malign	18.79	61.75	19.46	61.75	
	Normal	22.88	20.67	56.46	56.46	
	Total	59.73	60.10	60.20	60.01	

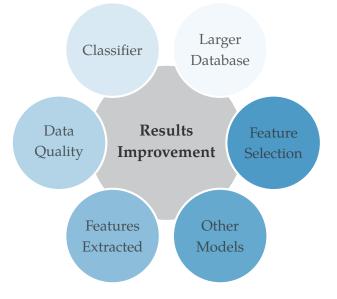
Results - Augmented mini-MIAS + VGG

		Target					
		Benign	Malign	Normal	Total		
Output	Benign	63.63	18.45	17.92	63.63		
	Malign	17.86	64.37	17.77	64.37		
	Normal	16.91	17.54	65.55	65.55		
	Total	64.66	64.14	64.75	64.52		


Target

Results Improvement


Larger Database


Results Improvement

References

- World Health Organization, "Breast cancer: prevention and control," 2016, [Accessed: 19 May 2016]. [Online]. Available: http://www.who.int/ cancer/detection/breastcancer/en/
- [2] M. G. Ertosun, and D. L. Rubin, "Probabilistic visual search for masses within mammography images using deep learning," in *Bioinformatics and Biomedicine (BIBM)*, 2015 IEEE International Conference, 2015, pp. 1310–1315.
- [3] J. Arevalo, F. A. González, R. Ramos-Pollán, J. L. Oliveira, and M. A. G. Lopez, "Convolutional neural networks for mammography mass lesion classification," in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015, pp. 797–800.
- [4] Z. Jiao, X. Gao, Y. Wang, and J. Li, "A deep feature based framework for breast masses classification," in *Neurocomputing*, vol. 197, 2016, pp. 221–231.
- [5] A. M. Abdel-Zaher, and A. M. Eldeib, "Breast cancer classification using deep belief networks," in *Expert Systems with Applications*, vol. 46, 2016, pp. 139–144.

- [6] J. Suckling, J. Parker, D. Dance, S. Astley, I. Hutt, C. Boggis, I. Rick-etts, E. Stamatakis, N. Cerneaz, S. Koket al., "The mammographic image analysis society digital mammogram database," in *Exerpta Medica. International Congress Series*, vol. 1069, 1994, pp. 375–378.
- [7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks," *Advances In Neural Information Processing Systems*, 2012, pp. 1–9.

