Application of the Wavelet-Galerkin Method on the homogeneous second order linear ordinary differential equation with constant coefficients Research practise 2 project presentation

### Obed Ríos-Ruiz<sup>1</sup> Patricia Gómez-Palacio<sup>2</sup>

<sup>1</sup>Mathematical Engineering, EAFIT University <sup>2</sup>Advisor, Department of Mathematical Sciences, EAFIT University

June 07, 2016

### Precedings Those who developed the theory















Fourier 1768-1830

Haar 1885-1938

Grossmann 1930-

Meyer 1939-

Mallat 1962-

Figure 1: Numerical Methods for ODE and Wavelets Timeline

Research practise 2 project presentation

Obed Ríos-Ruiz

Patricia Gómez-Palacio

### Precedings Those who developed the theory



## Galerkin 1871-1945



Daubechies 1954-

Figure 2: Wavelet-Galerkin Method Timeline

Research practise 2 project presentation

Obed Ríos-Ruiz Pa

#### Mathematical formulation

Consider  $\phi_i$  as a base of  $L^2([0,1])$  and every  $\phi_i$  satisfying  $C^2$  on [0,1]such that  $\phi_i(0) = a, \phi_i(1) = b, u_0$  as an approximate solution of the equation with  $\Lambda, S$  as a finite set of indices i and the subspace  $span\{\phi_i : i \in \Lambda\}$  respectively so that [3]:

$$\langle Lu_0 - f, \phi_i \rangle = 0, \quad \forall i \in \Lambda$$
 (1)

$$u_0 = \sum_{k \in \Lambda} a_k \phi_k \in S.$$
<sup>(2)</sup>

Letting  $\tilde{u}$  of the form (2) as the approximate solution of (1) it is intended that the residue  $R = L\tilde{u} - f$  to be orthogonal to the chosen base on  $\mathcal{D}_L$ . The Wavelet-Galerkin method considers  $\phi(x) = \Psi_{j,k}(x) = 2^{j/2}\Psi(2^jx - k)$  as a wavelet basis for  $L^2([0, 1])$ satisfying the boundary conditions  $\Psi_{j,k}(0) = \Psi_{j,k}(1) = 0$  and  $\forall j, k \in \Lambda$ then  $\Psi_{j,k}$  is  $C^2$ . Using the Daubechies [1] wavelets then both  $\varphi_{j,k}$  and  $\Psi_{j,k}$  can be computed setting the scaling and mother wavelet functions respectively as

$$\varphi(x) = \sum_{k=0}^{L-1} a_k \varphi(2x - k)$$

$$\Psi(x) = \sum_{k=2-L}^{L} (-1)^k a_{1-k} \varphi(2x - k),$$
(4)

with  $a_k$  characterized for the N-Daubechies wavelet grade.

### Calculations Daubechies Wavelets



Figure 3: Scaling and Wavelet functions for DN6

Research practise 2 project presentation

Obed Ríos-Ruiz Patricia Gómez-Palacio

# Formulations

#### **Daubechies Wavelets**



Figure 4: Scaling and Wavelet functions for DN12

### Calculations Daubechies Wavelets



Figure 5: Scaling and Wavelet functions for DN20

It is neccessary to computate several expressions in order to find the solution of differential equation by using this method, specifically the *Connection coefficients* [2] defined as follows:

#### Connection coefficients

$$\Omega_{j,k}^{m,n}(x) = \int_{-\infty}^{\infty} \varphi^{(m)}(y-j)\varphi^{(n)}(y-k)\mathrm{d}y.$$
(4)

Taking the respective derivatives and simplificating the following system of linear equations is found, where  $\Omega^{m,n}$  is the unknown vector to be calculated.

$$\begin{pmatrix} T - \frac{1}{2^{d-1}}I \\ M^d \end{pmatrix} \Omega^{m,n} = \begin{pmatrix} 0 \\ d! \end{pmatrix}$$
 (5)

where d = m + n,  $T = \sum_{i} a_i a_{q-2l+i}$  and  $M_i^k$  are the moments of  $\varphi_i$  defined as

$$M_i^k = \int_{-\infty}^{\infty} x^k \varphi_i(x) dx,$$

satisfying  $M_0^0 = 1$ .

| $\Lambda^{0,2}$ | N = 6, j = 0             | N = 6, j = 7             |
|-----------------|--------------------------|--------------------------|
| $\Omega_{-4}$   | 5.357142857141725e - 03  | 8.777142857143009e + 01  |
| $\Omega_{-3}$   | 1.142857142857160e - 01  | 1.872457142857140e + 03  |
| $\Omega_2$      | -8.761904761904885e-01   | -1.435550476190474e + 04 |
| $\Omega_{-1}$   | 3.390476190476218e + 00  | 5.554956190476182e + 04  |
| $\Omega_0$      | -5.267857142857142e + 00 | -8.630857142857110e + 04 |
| $\Omega_1$      | 3.390476190476168e + 00  | 5.554956190476169e + 04  |
| $\Omega_2$      | -8.761904761904653e - 01 | -1.435550476190469e + 04 |
| $\Omega_3$      | 1.142857142857138e - 01  | 1.872457142857137e + 03  |
| $\Omega_4$      | 5.357142857143558e - 03  | 8.777142857143159e + 01  |

Table 1: 2-term Connection Coefficients holding N = 6, and d = 2

| $\Lambda^{0,2}$ | N = 12,  j = 0  | $\Lambda^{0,2}$ | N = 6, j = 4    |
|-----------------|-----------------|-----------------|-----------------|
| $\Omega_{-18}$  | 3.928343e - 15  | $\Omega_1$      | 2.175217e + 00  |
| $\Omega_{-17}$  | -3.486099e - 16 | $\Omega_2$      | -6.066894e - 01 |
| $\Omega_{-16}$  | 2.858395e - 15  | $\Omega_3$      | 2.546974e - 01  |
| $\Omega_{-15}$  | -2.399663e - 13 | $\Omega_4$      | -1.054297e - 01 |
| $\Omega_{-14}$  | -5.015915e - 11 | $\Omega_5$      | 3.758004e - 02  |
| $\Omega_{-13}$  | -2.219929e - 09 | $\Omega_6$      | -1.078072e - 02 |
| $\Omega_{-12}$  | 6.114256e - 09  | $\Omega_7$      | 2.357271e - 03  |
| $\Omega_{-11}$  | 1.222971e - 07  | $\Omega_8$      | -3.693880e - 04 |
| $\Omega_{-10}$  | -2.579303e - 06 | $\Omega_9$      | 3.852452e - 05  |

# Calculations

**Connection Coefficients Calculations** 

| $\Omega_{-9}$ | 3.852452e - 05    | $\Omega_{10}$ | -2.579303e - 06 |
|---------------|-------------------|---------------|-----------------|
| $\Omega_{-8}$ | -3.693880e - 04   | $\Omega_{11}$ | 1.222971e - 07  |
| $\Omega_{-7}$ | 2.357271e - 03    | $\Omega_{12}$ | 6.114256e - 09  |
| $\Omega_{-6}$ | -1.078072e - 02   | $\Omega_{13}$ | -2.219929e - 09 |
| $\Omega_{-5}$ | 3.758004e - 02    | $\Omega_{14}$ | -5.015874e - 11 |
| $\Omega_{-4}$ | -1.054297e - 01   | $\Omega_{15}$ | -2.399884e - 13 |
| $\Omega_{-3}$ | 2.546974e - 01    | $\Omega_{16}$ | 2.821739e - 15  |
| $\Omega_{-2}$ | -6.066894e - 01   | $\Omega_{17}$ | -3.799108e - 16 |
| $\Omega_{-1}$ | 2.175217e + 00    | $\Omega_{18}$ | -3.640745e - 16 |
|               | $\Omega_0$ $-3.4$ | 93238         | e + 00          |

Table 2: 2-term Connection Coefficients with N = 20, and d = 2

Let us consider the general integral-differential equation depending on u with  $x \in [a, b]$ :

$$f(x, \frac{du}{dx}, \frac{d^2u}{dx^2}, \dots, \int^x u dx_1, \int^x \int^{x_1} u dx_2 dx_1, \dots) = 0.$$
 (6)

Following the common notation for the approximation of u according to (2), we have  $\tilde{u}$  is as follows:

$$\tilde{u}(x) = \sum_{k=1-L}^{2^{j}} c_{k}\varphi_{j,k}(x) = \sum_{k=1-L}^{2^{j}} c_{k}2^{j/2}\varphi(2^{j}x-k).$$
(7)

Using this approximation, the coefficients  $c_k$  are determined by applying the inner product and solving (8) for  $k = 1 - L, \ldots, 2^j$ .

$$\int_{a}^{b} \varphi_{j,k}(x) f(x, \frac{d\tilde{u}}{dx}, \frac{d^{2}\tilde{u}}{dx^{2}}, \dots, \int^{x} \tilde{u} dx_{1}, \int^{x} \int^{x_{1}} \tilde{u} dx_{2} dx_{1}, \dots) = 0 \quad (8)$$
Research practise 2 project presentation
$$Obed Bios-Buiz = Patricia Gomez-Palacio$$

Consider the problem

Second order linear ordinary differential equation

$$\frac{d^2u}{dx^2} + \alpha \frac{du}{dx} + \beta u = 0, \quad 0 < x < 1,$$
$$u(0) = a \quad \text{and} \quad u(1) = b.$$

Using the wavelet basis of level N and resolution j for the approximation, where the  $c_k$  coefficients are unknown, then

$$\tilde{u}(x) = \sum_{k=1-N}^{2^{j}} c_k 2^{j/2} \varphi(2^{j}x - k) = \sum_{k=1-N}^{2^{j}} c_k \varphi_{j,k}(x),$$

## Specification

$$\sum_{k=1-N}^{2^{j}} c_{k} \Omega_{0,k-n}^{0,2} + \alpha \sum_{k=1-N}^{2^{j}} c_{k} \Omega_{0,k-n}^{0,1} + \beta \sum_{k=1-N}^{2^{j}} c_{k} \delta_{k,n} = 0$$

#### where

$$\delta_{k,n}(x) = \int_{-\infty}^{\infty} \varphi_{j,k} \varphi_{j,n} dx = \int_{0}^{N-1} \varphi_{j,k} \varphi_{j,n} dx,$$
  

$$\Omega_{0,k-n}^{0,2} = 2^{2j} \int_{-\infty}^{\infty} \varphi_{j,k}'' \varphi_{j,n} dx = 2^{2j} \int_{0}^{N-1} \varphi_{j,k}'' \varphi_{j,n} dx$$
  

$$\Omega_{0,k-n}^{0,1} = 2^{j} \int_{-\infty}^{\infty} \varphi_{j,n} \varphi_{j,k}' dx = 2^{j} \int_{0}^{N-1} \varphi_{j,n} \varphi_{j,k}' dx$$

### Boundary conditions

$$u(0) = \sum_{k=1-N}^{2^{j}} c_{k} 2^{j/2} \varphi(-k) = a \quad \to \sum_{k=1-N}^{2^{j}} c_{k} 2^{j/2} \delta_{k,n}(0) = a$$
$$u(1) = \sum_{k=1-N}^{2^{j}} c_{k} 2^{j/2} \varphi(2^{j}-k) = b \rightarrow \sum_{k=1-N}^{2^{j}} c_{k} 2^{j/2} \delta_{k,n}(1) = b$$

Setting j = 0 and N = 6 we seek for an approximation of the form

$$u = \sum_{k=1-6}^{2^0} c_k 2^{0/2} \varphi(2^0 x - k) = \sum_{k=-5}^{1} c_k \varphi(x - k)$$

Hence TC = B with

$$C^{T} = \begin{bmatrix} c_{-5} & c_{-4} & c_{-3} & c_{-2} & c_{-1} & c_{0} & c_{1} \end{bmatrix},$$
  
$$B^{T} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \text{ and }$$

$$T = \begin{bmatrix} 0 & \varphi(4) & \varphi(3) \\ \Omega_{1}^{0,2} + p_{1}\Omega_{1}^{0,1} & \Omega_{0}^{0,2} + p_{1}\Omega_{0}^{0,1} + p_{2} & \Omega_{-1}^{0,2} + p_{1}\Omega_{-1}^{0,1}\Omega_{-5}^{0,2} + p_{1}\Omega_{-1}^{0,1} \\ \Omega_{2}^{0,2} + p_{1}\Omega_{2}^{0,1} & \Omega_{1}^{0,2} + p_{1}\Omega_{1}^{0,1} & \Omega_{0}^{0,2} + p_{1}\Omega_{0}^{0,1} + p_{2}\Omega_{-4} + p_{1}\Omega_{-4}^{0,1} \\ \Omega_{3} + p_{1}\Omega_{3}^{0,1} & \Omega_{2}^{0,2} + p_{1}\Omega_{2}^{0,1} & \Omega_{1}^{0,2} + p_{1}\Omega_{1}^{0,1}\Omega_{-3} + p_{1}\Omega_{-4}^{0,1} \\ \Omega_{4} + p_{1}\Omega_{4}^{0,1} & \Omega_{3}^{0,2} + p_{1}\Omega_{3}^{0,1} & \Omega_{2}^{0,2} + p_{1}\Omega_{2}^{0,1}\Omega_{-2}^{0,2} + p_{1}\Omega_{-1}^{0,1} \\ \Omega_{5}^{0,2} + p_{1}\Omega_{5}^{0,1} & \Omega_{4}^{0,2} + p_{1}\Omega_{4}^{0,1} & \Omega_{3}^{0,2} + p_{1}\Omega_{3}^{0,1}\Omega_{-1}^{0,2} + p_{1}\Omega_{-1}^{0,1} \\ 0 & 0 & \varphi(4) \end{bmatrix}$$

Solving the last system we find

$$C^{T} = \begin{bmatrix} -0.9972 & -0.8776 & 0.1279 & 1.0543 & 1.0870 & 0.2479 & -0.5059 \end{bmatrix}$$
  
and therefore

$$\tilde{u}(x) = \sum_{k=-5}^{1} c_k \varphi(x-k) = -0.9972 \varphi(x+5) - 0.8776 \varphi(x+4) + \dots$$
  
$$0.1279 \varphi(x+3) + 1.0543 \varphi(x+2) + 1.0870 \varphi(x+1) + \dots$$
  
$$0.2476 \varphi(x) - 0.5059 \varphi(x-1).$$



Figure 6: Exact and approximate solution of u'' + u = 0, u(0) = 1, u(1) = 0.



Figure 7: Error between exact and approximate solutions

### Results Approximate solutions



Figure 8: Exact and approximate solution of u'' + 3u' + 25u = 0, u(0) = 1, u(1) = 1.

## Results

#### Parameters variation



Figure 9: Exact and approximate solution of  $u'' + (9.5\pi)^2 u = 0$ , u(0) = 2, u(1) = -1.



- DAUBECHIES, I., Orthonormal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics, vol. 41, no. 7, pp. 909–996 (1988).
- [2] POPOVICI, C.I., Matlab Evaluation of the Ω<sup>m,n</sup><sub>j,k</sub>(x) Coefficients for PDE Solving by Wavelet-Galerkin Approximation. Analele Ştiinţifice ale Universităţii "Ovidius" Constanţa. Seria: Matematică, vol. 18, pp. 287–294 (2010).
- [3] MISHRA, V. AND SABINA, Wavelet Galerkin Solutions of Ordinary Differential Equations. International Journal of Mathematics, vol. 5, no. 9, pp. 407–424 (2011).