Mathematical Modelling of a Deregulated Electricity Market With Different Production Capacities Research Practise 2 Final Presentation

Juan F. García-Pulgarín<sup>1</sup> Carlos A. Cadavid-Moreno<sup>2</sup>

<sup>1</sup>Mathematical Engineering EAFIT University

<sup>2</sup>Department of Mathematical Sciences EAFIT University

June 7th, 2016



#### 2 Objectives

#### 3 Results



# 5 Bibliography



#### 2 Objectives

#### 3 Results



# 5 Bibliography

•  $g_1, g_2, ..., g_N$ ; generator firms, with production capacity  $k_i$  and operation cost  $c_i$ ,  $\forall i \in \{1, 2, ..., N\}$ .

- $g_1, g_2, ..., g_N$ ; generator firms, with production capacity  $k_i$  and operation cost  $c_i$ ,  $\forall i \in \{1, 2, ..., N\}$ .
- $K = \sum_{n=1}^{N} k_n$ ; total capacity of the system.

- $g_1, g_2, ..., g_N$ ; generator firms, with production capacity  $k_i$  and operation cost  $c_i$ ,  $\forall i \in \{1, 2, ..., N\}$ .
- $K = \sum_{n=1}^{N} k_n$ ; total capacity of the system.
- $d \in \{1, ..., K\}$ ; random variable, which determines electricity demand for the next day, with probability distribution  $\pi_i = Pr(d = i)$ .

- $g_1, g_2, ..., g_N$ ; generator firms, with production capacity  $k_i$  and operation cost  $c_i$ ,  $\forall i \in \{1, 2, ..., N\}$ .
- $K = \sum_{n=1}^{N} k_n$ ; total capacity of the system.
- $d \in \{1, ..., K\}$ ; random variable, which determines electricity demand for the next day, with probability distribution  $\pi_i = Pr(d = i)$ .
- $p_i \in [0, \bar{p}]$ ; unitary price offered by generator firm  $g_i$ , and  $\bar{p}$  is a regulatory maximum price.

∘  $r : \{1, 2, ..., N\} \rightarrow \{1, 2, ..., N\}$ ; ranking of lowest prices.

*r*: {1,2,...,*N*} → {1,2,...,*N*}; ranking of lowest prices.
*n<sub>i</sub>* = *r*<sup>-1</sup>(*i*), ∀*i* ∈ {1,...,*N*}; index of firm at position i in the ranking.

*r*: {1,2,...,*N*} → {1,2,...,*N*}; ranking of lowest prices. *n<sub>i</sub>* = *r*<sup>-1</sup>(*i*), ∀*i* ∈ {1,...,*N*}; index of firm at position *i* in the ranking. *K<sub>j</sub>* = ∑<sup>*j*</sup><sub>*m*=1</sub> *k<sub>nm</sub>*; sum of capacities of the first *j* firms in the ranking.

∘  $r : \{1, 2, ..., N\} \rightarrow \{1, 2, ..., N\}$ ; ranking of lowest prices.

•  $n_i = r^{-1}(i)$ ,  $\forall i \in \{1, ..., N\}$ ; index of firm at position i in the ranking.

•  $K_j = \sum_{m=1}^j k_{n_m}$ ; sum of capacities of the first *j* firms in the ranking.

• *F*<sub>1</sub>, *F*<sub>2</sub>, ..., *F*<sub>N</sub>; cumulative distribution function for the price offered by generator firms, respectively.

∘  $r : \{1, 2, ..., N\} \rightarrow \{1, 2, ..., N\}$ ; ranking of lowest prices.

- $n_i = r^{-1}(i)$ ,  $\forall i \in \{1, ..., N\}$ ; index of firm at position i in the ranking.
- $K_j = \sum_{m=1}^j k_{n_m}$ ; sum of capacities of the first *j* firms in the ranking.
- *F*<sub>1</sub>, *F*<sub>2</sub>, ..., *F*<sub>N</sub>; cumulative distribution function for the price offered by generator firms, respectively.
- $\circ$   $u_i$ ; utility of generator firm *i*, where

∘  $r : \{1, 2, ..., N\} \rightarrow \{1, 2, ..., N\}$ ; ranking of lowest prices.

- $n_i = r^{-1}(i)$ ,  $\forall i \in \{1, ..., N\}$ ; index of firm at position i in the ranking.
- $K_j = \sum_{m=1}^j k_{n_m}$ ; sum of capacities of the first *j* firms in the ranking.
- *F*<sub>1</sub>, *F*<sub>2</sub>, ..., *F*<sub>N</sub>; cumulative distribution function for the price offered by generator firms, respectively.
- $\circ$   $u_i$ ; utility of generator firm *i*, where

$$u_i = \delta_{\rho}(i)(d - K_{\rho-1})(p_{n_{\rho}} - c_{n_{\rho}}) + \sum_{m=1}^{\rho-1} \delta_m(i)k_{n_m}(p_{n_{\rho}} - c_{n_m})$$

∘  $r : \{1, 2, ..., N\} \rightarrow \{1, 2, ..., N\}$ ; ranking of lowest prices.

- $n_i = r^{-1}(i)$ ,  $\forall i \in \{1, ..., N\}$ ; index of firm at position i in the ranking.
- $K_j = \sum_{m=1}^j k_{n_m}$ ; sum of capacities of the first *j* firms in the ranking.
- $F_1, F_2, ..., F_N$ ; cumulative distribution function for the price offered by generator firms, respectively.
- $\circ$   $u_i$ ; utility of generator firm *i*, where

$$u_i = \delta_{\rho}(i)(d - K_{\rho-1})(p_{n_{\rho}} - c_{n_{\rho}}) + \sum_{m=1}^{\rho-1} \delta_m(i)k_{n_m}(p_{n_{\rho}} - c_{n_m})$$

with  $\rho = max\{j : K_{j-1} < d\}$  and  $\delta_m(i) = 1$  if  $i = n_m$  and  $\delta_m(i) = 0$ , otherwise.

We want to work in a Nash equilibrium situation, thus, adapting the definition of Nash equilibrium in finite mixed strategies given by [Navarro et al., 2003], we have that  $F_1, F_2, ..., F_N$  is a Nash equilibrium if  $\forall n \in \{1, ..., N\}$ 

We want to work in a Nash equilibrium situation, thus, adapting the definition of Nash equilibrium in finite mixed strategies given by [Navarro et al., 2003], we have that  $F_1, F_2, ..., F_N$  is a Nash equilibrium if  $\forall n \in \{1, ..., N\}$ 

$$E_{F_1,F_2,\ldots,F_n,\ldots,F_N}(u_n) \geq E_{F_1,F_2,\ldots,\tilde{F}_n,\ldots,F_N}(u_n)$$

where  $\tilde{F}_n$  is any other possible cumulative distribution function for the price offered by  $g_n$ .

It is known (adapting Theorem 3.1 in [Navarro et al., 2003]) that  $F_1, F_2, ..., F_n$  is a Nash equilibrium if and only if for any n, the expected profit  $\Phi_n(p)$  of firm  $g_n$  given that it plays the pure strategy  $p_n = p$  and the other  $g'_i s$  play  $F'_i s$ , is independent of p.

It is known (adapting Theorem 3.1 in [Navarro et al., 2003]) that  $F_1, F_2, ..., F_n$  is a Nash equilibrium if and only if for any n, the expected profit  $\Phi_n(p)$  of firm  $g_n$  given that it plays the pure strategy  $p_n = p$  and the other  $g'_i s$  play  $F'_i s$ , is independent of p.

Thus, we have to find an explicit formula for  $\Phi_n(p)$ , which is necessary if we want to obtain the equilibrium strategies  $F_1, F_2, ..., F_n$ , solving the differential equations system  $\frac{d}{dp}\Phi_n(p) = 0$ , and once the *F*'s are obtained, is possible to analyze how each type of firm plays.

An explicit formula for  $\Phi_n(p)$  in the case that all firms are equal, is given in Appendix A in [von der Fehr and Harbord, 1993], as follows:

$$\Phi_n(p) = \sum_{i=1}^N \pi_i \{ \Pr[p_{n_{i-1}} \le p \le p_{n_{i+1}} | p_n = p] p + \int_p^{\bar{p}} \rho dF_{n_i}(\rho) \}$$

An explicit formula for  $\Phi_n(p)$  in the case that all firms are equal, is given in Appendix A in [von der Fehr and Harbord, 1993], as follows:

$$\Phi_n(p) = \sum_{i=1}^N \pi_i \{ \Pr[p_{n_{i-1}} \le p \le p_{n_{i+1}} | p_n = p] p + \int_p^{\bar{p}} \rho dF_{n_i}(\rho) \}$$

where

$$F_{n_i}(\rho) = \Pr[p_{n_i} \le \rho | p_n = \rho] = \sum_{j=i-1}^{N-1} {\binom{N-1}{j}} F(\rho)^j (1 - F(\rho))^{N-1-j}$$

An explicit formula for  $\Phi_n(p)$  in the case that all firms are equal, is given in Appendix A in [von der Fehr and Harbord, 1993], as follows:

$$\Phi_n(p) = \sum_{i=1}^N \pi_i \{ \Pr[p_{n_{i-1}} \le p \le p_{n_{i+1}} | p_n = p] p + \int_p^{\bar{p}} \rho dF_{n_i}(\rho) \}$$

where

$$F_{n_i}(\rho) = \Pr[p_{n_i} \le \rho | p_n = \rho] = \sum_{j=i-1}^{N-1} {\binom{N-1}{j}} F(\rho)^j (1 - F(\rho))^{N-1-j}$$

and

$$\Pr[p_{n_{i-1}} \le p \le p_{n_{i+1}} | p_n = p] = \binom{N-1}{i-1} F(p)^{i-1} (1 - F(p))^{N-i}$$

# Outline

## Problem's Definition

## 2 Objectives

#### 3 Results



# 5 Bibliography

## Find an explicit formula for $\Phi_n(p)$ in the case N = 4.

Find an explicit formula for  $\Phi_n(p)$  in the case N = 4.

## Specific

• Understand each component of the explicit formula of  $\Phi_n(p)$  in the case where all firms have the same properties.

Find an explicit formula for  $\Phi_n(p)$  in the case N = 4.

## Specific

- Understand each component of the explicit formula of  $\Phi_n(p)$  in the case where all firms have the same properties.
- Define the pure strategy space and mixed strategy space for each one of the players.

Find an explicit formula for  $\Phi_n(p)$  in the case N = 4.

## Specific

- Understand each component of the explicit formula of  $\Phi_n(p)$  in the case where all firms have the same properties.
- Define the pure strategy space and mixed strategy space for each one of the players.
- Propose a structure of the formula for  $\Phi_n(p)$ , when N = 4 using ideas of the previous case.

# Outline

Problem's Definition

## 2 Objectives





# 5 Bibliography

We noted that the pure strategy space for the player  $g_i$  is  $S_i = [0, \bar{p}]$ , and the mixed strategy space is

 $\Sigma_i = \{F : [0, \overline{p}] \rightarrow [0, 1] \mid F \text{ is a cumulative distribution function}\}$ 

Now, if we consider that there could be ties between prices offered, the coordinator becomes another player, and its pure strategy space is given by

 $S_c = \{R: [0, \bar{p}]^N \rightarrow \{1, 2, ..., N\}^2 \mid R(p_1, ..., p_N) \text{ is a ranking of lowest prices} \}$ 

## Results

- We could obtain  $\Phi_n(p)$ , when N = 2.
- Then, we focused on the problem of obtaining the differential equations system  $\frac{d}{dp}\Phi_n(p) = 0$ , where

$$\begin{split} \frac{d}{d\rho} \Phi_{j}(\rho) &= \\ & \sum_{A \cup \{j\} \cup B = \{1, \dots, N\}} \left( \sum_{i=1}^{k_{j}} i \pi_{K_{A}+i} \right) \frac{d}{d\rho} \left\{ (\rho - c_{j}) \prod_{a \in A} F_{a}(\rho) \prod_{b \in B} \left[ \sum_{b \in B} \frac{1 - F_{b}(\bar{p}-)}{F_{b}(\bar{p}-) - F_{b}(\rho)} + 1 \right] (F_{b}(\bar{p}-) - F_{b}(\rho)) \right\} - \\ & \sum_{A \cup \{c\} \cup B = \{1, \dots, N\}, j \in A} \left\{ k_{j}(\rho - c_{j})F_{c}'(\rho) \prod_{a \in A, a \neq j} F_{a}(\rho) \prod_{b \in B} (F_{b}(\bar{p}-) - F_{b}(\rho)) \left[ \sum_{b \in B} \frac{1 - F_{b}(\bar{p}-)}{F_{b}(\bar{p}-) - F_{b}(\rho)} + 1 \right] \right\} * \\ & \left( \sum_{i=1}^{k_{c}} \pi_{K_{A}+i} \right); \quad \forall j \in \{1, \dots, N\}. \end{split}$$

• Once we got it, we solved and implemented it on Mathematica 10.4.

## Results

Computational implementation

Here, we show the behavior of the  $F_1, F_2, F_3$ , in the case of N = 3,  $(c_1, c_2, c_3) = (0, 0, 0)$ ,  $(k_1, k_2, k_3) = (1, 2, 3)$ ,  $\pi = (0.1, 0.2, 0.1, 0.1, 0.3, 0.2)$  and considering that the firm  $F_3$  is which jump at  $\bar{p}$ , with different values of  $F_3(\bar{p}-) := \lim_{p \to \bar{p}^-} F_3(p)$ 

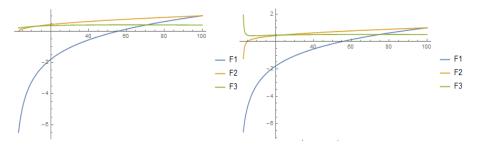


Figure: Left:  $F_3(\overline{p}-) = 0.4$ ; Right:  $F_3(\overline{p}-) = 0.5$ 

## Results Computational implementation

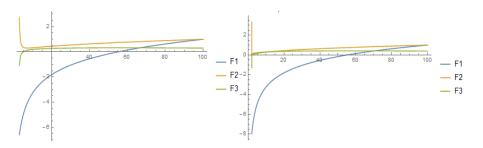


Figure: Left:  $F_3(\bar{p}-) = 0.3$ ; Right:  $F_3(\bar{p}-) = 0.395135$ 

# Outline

Problem's Definition

## 2 Objectives

#### 3 Results



# 5 Bibliography

Given that the system obtained depends of each  $F_i(\overline{p}-)$ , we need to know how to indentify the firm wich has the possible jump at  $\overline{p}$ , and the value of this jump. Given that the system obtained depends of each  $F_i(\overline{p}-)$ , we need to know how to indentify the firm wich has the possible jump at  $\overline{p}$ , and the value of this jump.

Also, we want to consider the case when the firms are divided by types, depending of their costs and capacities.

# Outline

- Problem's Definition
- 2 Objectives

#### 3 Results

4 Further Work



[Navarro et al., 2003] Navarro, J., Tena, E., and Pastor, J. (2003).
*Teoría de Juegos*.
Out of Series. Editorial Alhambra S. A. (SP).

[von der Fehr and Harbord, 1993] von der Fehr, N.-H. M. and Harbord, D. (1993). Spot market competition in the uk electricity industry. *University of Oslo*.