A Methodology for Commodity Trading in Colombia

J. Mauricio Cuscagua-Lopez Andrés F. Rojas-Amar Ulises Cárcamo-Cárcamo

Research Practise 2: Project Presentation Mathematical Engineering

June, 2016

Some Definitons

- **Commodity**: Basic good used in commerce that is interchangeable with other commodities of the same type. Most often used as inputs in the production of other goods or services.
- **Trading**: Concept that involves multiple parties participating in the voluntary negotiation and then the exchange of one's goods and services for desired goods and services that someone else possesses.
- **Derivative**: Security with a price that is dependent upon or derived from one or more underlying assets.

Futures Contracts

• Future Contract: contractual agreement to buy or sell a particular commodity at a pre-determined price in the future. Futures contracts detail the quality and quantity of the underlying asset and their principal characteristic is that they are standardized.

Derivatives Valuation

Let f be the price of a derivative. To calculate its price the following Partial Differential Equation must be solved [Black and Scholes, 1973]:

$$\frac{\partial f}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 f}{\partial S^2} + rS \frac{\partial f}{\partial S} = rf \tag{1}$$

where f is the price of the Option, S is the price of the underlying, σ is the volatility of the underlying and r is the free interest rate risk.

Note

The boundary conditions depends on the Option's dynamic.

Assumptions

- The price of the underlying is a Geometric Brownian movement
- No transaction costs.
- The assets are perfectly divisible.
- The underlying pays no dividends during the life of the option.
- No arbitrage opportunities.
- The negotiation of assets is continuing.
- Free interest rate risk r is constant for all maturities.

Black-76 Model

In 1976, Fisher Black [Black, 1976] presented for the first time a variant of the Black-Scholes model which had, as its principal application, a focus for pricing options on future contracts. This model, which will be introduce further, has more light assumptions so it may be applyed to both future and forward contracts in a more suitable way.

Black-76: Futures I

The T-futures price f_t, T for a given commodity can be explained by Equation 2.

$$df_t, T = \sigma f_t, T dW_t^d \tag{2}$$

where f_t, T is the price of the T-future contract, σ the volatility of the underlying and W_t^d is a Wiener process. The assumptions of the Black-76 model for future contracts valuation are:

- The T-futures price is perceived as a driftless lognormal process with respect to the domestic risk neutral measure.
- T will be fixed a priori.
- $f_t = f_t, T$.

Black-76: Futures II

By applying the Ito's lemma we obtain:

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 f^2 \frac{\partial^2 V}{\partial f^2} - r^d V = 0.$$
(3)

where, σ corresponds to the volatility of the underlying and r^d is the domestical riskless bond. V is the prife of the future and f is the T-future price.

Black-76 Model: Numerical Scheme

Following [Hull, 2006], the Finite Difference method makes a discretization of the partial derivatives in Equation (3).

$$\frac{\partial V}{\partial t} \approx \frac{V_{i+1,j} - V_{i,j}}{\Delta t}$$

$$\frac{\partial^2 V}{\partial f^2} \approx \frac{V_{i+1,j} + V_{i-1,j} - 2V_{i,j}}{\Delta f^2}$$

Black-76 Model: Numerical Scheme

Using these substitutions, it is given in return the numerical scheme to be implemented:

$$V_{i,j} = a_j V_{i+i,j+1} + b_j V_{i+1,j} + c_j V_{i+1,j-1}$$
(4)

where,

$$a_j = \frac{\sigma^2 j^2 \Delta t}{2(1 + r^d \Delta t)}$$
$$b_j = \frac{1 - \sigma^2 j^2 \Delta t}{1 + r^d \Delta t}$$
$$c_j = a_j$$

Black-76 Model: Boundary Conditions

To implement the numerical scheme, boundary conditions must be defined as follow:

where $T = \tau - t$ is the maturity time and K is the exercise price of the future.

Black-76 Model: Stability of the Numerical Scheme

In order of making the method to be stable, it is necessary that $a_j, b_j, c_j \ge 0, \forall j$. The positivity of b_j is that $1 \ge \sigma^2 j^2 \Delta t$. The worst case is when j is takes the greatest value, i.e.:

$$1 \ge \sigma^2 \left(\frac{f_{max}}{\Delta f}\right)^2 \Delta t \leftrightarrow \frac{1}{\sigma^2} \left(\frac{\Delta f}{f_{max}}\right)^2 \ge \Delta t \tag{5}$$

Following the results obtained by Marin and Bastidas in [Marín and Bastidas, 2012], and the Von Neumann criteria, the criteria is accomplished when the amplification factor $|\epsilon| = |a_j + b_j + c_j|$ is equal to 1 when $\Delta f, \Delta t$ tend to 0. Therefore, the numerical scheme is conditionally stable.

Black-76 Model: Aplication to Yellow Corn and Soy I

Figure 1: Adjustment of the standard normal distribution to normalized returns of yellow corn.

Black-76 Model: Aplication to Yellow Corn and Soy I

Figure 2: Adjustment of the standard normal distribution to normalized returns of soy.

Black-76 Model: Aplication to Yellow Corn and Soy I

By the implementation of Matlab, a Kolmogorov-Smirnov test was implemented. Both, the returns of yellow corn and soy, did not reject the null-hypothesis that sugests the standardized continuos returns follow a standard normal distribution. In this sense, the spot price of both yellow corn and soy can be perceived as a driftless log-normal process.

Calculations of Volatility and IBR rate

The volatility σ can be estimated by the calculation of the variance of the continuous returns for the spot price of both yellow corn and soy. The domestic riskless bond r^d can be easely seen as the IBR rate¹ used by the bancs for reflexing the liquity of the colombian money market.

¹Banking Benchmark. For more information about the IBR rate see [Asobancaria, 2013].

Set of Parameters

Table 1: Parameters configuration

Yellow Corn		Soy	
σ	0.96	σ	0.52
r^d	0.067	r^d	0.067
Exercise price	600	Exercise price	1100
Initial spot price	661.22	Initial spot price	1136
Maturity Time	1 year	Maturity Time	1 year

Future Valuation I

Figure 3: Mail for the valuation of a future contract over a unit of yellow corn for one year as maturity time. The calculated price for the future contract is \$717.12 COP.

Future Valuation II

Figure 4: Mail for the valuation of a future contract over a unit of soy for one year as maturity time. The calculated price for the future contract is \$1,238.3 COP.

Method Convergence I

Figure 5: Convergence of the price estimated as the number of nodes in the mail increases.

Conclusions and Further Work I

- The Black-76 model can be applied to soy and yellow corn trading where the market uses the IBR rate instead of a domestic riskless bond.
- It was shown the good behavior of the Black-76 model applied to historical data that follows the assumptions established by the model.
- To verify the monotonicity, positivity, consistency, stability and convergence of the numerical scheme.

References

Ē

Asobancaria (2013).

ABC del IBR.

http://www.asobancaria.com/ibr/.

Black, F. (1976).

The pricing of commodity contracts.

Journal of financial economics, 3(1):167–179.

Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities.

The Journal of Political Economy, pages 637–654.

Hull, J. C. (2006).

Options, futures, and other derivatives.

Pearson Education India.

References

Marín, F. and Bastidas, M. (2012).

Numerical solution of pricing of european call option with stochastic volatility.

International Journal of Research and Reviews in Applied Sciences, 13(3):666–677.