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Intuition on what we want to do

How can be explained an the relationship between two specific
variables? That is a question which many researchers have in a daily
basis. For instance, one might be interested in some government
policy and its effect on an important economic measure such as the
gross domestic product, that would be important because no
government would want to spend money in a policy which is leading
to an undesirable result or maybe to nothing at all.
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Common model selection problem

We consider model selection procedures based on a common linear
model as the following:

y = Xβ + ε (1)

where X is a set of possible controls, y an exogenous variable and ε
is a white noise with variance σ2.
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Frequentist: t-test

This is the most common test for check if a variable is significant
after a linear regression is done, the statistic in the case in which we
are checking if a variable is significant is defined as:

Tβ̂i =
β̂i

s.e(β̂i)
∼ Tn−k

where s.e(β̂i) is the standard error of βi estimation, k is the number
of regressors and Tn−k is a T-student distribution with n − k degrees
of freedom.
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Frequentist: LASSO

The Lasso estimator as introduced in Tibshirani [1996] is an
optimization problem which solves the following:

β∗ = min
β∈Rp

n∑
i=1

[di − x
′

i βm]2 + λ

p∑
j=1

| βj | (2)

where λ is a penalization coefficient. Let T be

T =
{
j ∈ 1, 2, ..., p : | β∗j |> 0

}
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Bayesian: MC 3

Markov chain Monte Carlo model composition (MC3) is a Bayesian
methodology which uses a stochastic search comparing different
models by its posterior model probability.
Following Simmons et al. [2010], let M = {M1,M2, ...,Mm} be the
set of models under consideration, and y the observed data as in (1).
The posterior model probability (PMP) for model Mj is defined as:

P(Mj | y ,M) =
P(y | Mj)π(Mj)∑m
i=1 P(y | Mi)π(Mi)

∀j = 1, 2, ...,m (3)
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Bayesian: MC 3

Let

P(y | Mj) =

∫
...

∫
P(y | αj , Mj)π(αj | Mj)dαj ∀j = 1, 2, ...,m

(4)
be the integrated likelihood of the model Mj , αj is the vector of
parameters of the model Mj , π(αj | Mj) is the prior of parameters
under Mj , P(y | αj , Mj) is the likelihood and π(Mj) is the prior
probability that Mj is the true model.

Mateo Graciano-Londoño and Andrés Raḿırez-Hassan Fighting Multicollinearity in Double Selection



Problem statement Methodology Objectives Simulation exercises Simulation results Real data results References

Bayesian: MC 3, defining priors

The a prori acknowledge of the probability of model j of being the
true model is the term π(Mj) in (3) so it is intuitive to think that is
equal to 1/m for each of m considered model. But we can see in
Scott et al. [2010] that, although that choice is the more intuitive it
is not the best, in fact, they use a prior based on a Binomial-Beta
distribution, so we have::

π(Mj) = π(Mj | prob) = probkj (1− prob)p−kj ∀j = 1, 2, ...,m (5)

where prob ∼ beta(a, b) and kj is the number of selected variables in
model j .

Mateo Graciano-Londoño and Andrés Raḿırez-Hassan Fighting Multicollinearity in Double Selection



Problem statement Methodology Objectives Simulation exercises Simulation results Real data results References

Bayesian: MC 3, defining priors

For every model there should be priors for every parameter on it, for
the linear regression model those priors include assumptions over σ2

and β. There are different possibilities for selecting those priors but
in general some may use σ2 ∼ InverseGamma(a, b) where a and b are
hyper-parameters but since there is a difficult regarding the choose of
a and b there is also another commonly used prior which is σ2 ∝ 1

σ
.
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Bayesian: MC 3, defining priors

The most common (local) prior for β is
β | M , σ ∼ Nk(0, σ2(gX

′
X )−1) which is a k-variate normal

distribution with mean 0 and covariance matrix σ2(gX
′
X )−1.

The idea of a nonlocal (to 0) prior is to effectively eliminate models
with unnecessary explanatory variables, for instance consider the
following nonlocal prior proposed by Johnson and Rossell [2012]:

π(β | τ, σ2, r , Ap) =dp(2π)−p/2(τσ2)−rp−p/2

| Ap |1/2 exp

{
− 1

2τσ2
β′Apβ

} p∏
i=1

β2r
i (6)

where τ, r , Ap are hyper-parameters for the prior.
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Bayesian: MC 3, choosing which variables to

include

So far the given methodology leads to the best m models in terms of
posterior model probability, but it does not tell which are the
variables which leads to the best model. Intuitively one can say that
the variables to include would be those which appears in the best
model (in terms of PMP), but as Barbieri and Berger [2004] shows
the best model is the median probability model in term of prediction.
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Bayesian: MC 3, choosing which variables to

include

The median probability model is the one which includes every
variable which has posterior inclusion probability (PIP) higher than
0.5. The PIP for variable i is defined as

PIPi =
m∑
j=1

P(Mj | y ,M) ∗ Ii ,j

where

Ii ,j =


1 if xi ∈ Mj

0 if xi 6∈ Mj
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Double selection: Problem statement

Consider the following structure [Belloni et al., 2014]:

yi = αdi + x
′

i βg + εi (7)

di = x
′

i βm + ζi (8)

where yi is the response, βg , βm are the structural and treatments
effects of variables xi respectively, di is the treatment, α is the
treatment effect and εi , ζi are stochastic errors such that

E [εi | xi , di ] = E [ζi | xi ] = 0
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Double selection: How to do it

Following the Belloni et al. [2014] idea behind the post double LASSO
we consider a general post double estimation which can be performed
regardless the model selection procedure. Consider (7) and (8) a post
double selection estimation for α would be a three staged procedure:

1 Let T1 be a set of selected controls after model selection in 7
excluding d.

2 Let T2 be a set of selected controls after model selection in 8.

3 Let T = T1 ∪ T2 the set of selected controls in at least one of
the previous stages, then make X=T and perform an usual OLS
estimation in (7) which leads to a estimation of α.

Mateo Graciano-Londoño and Andrés Raḿırez-Hassan Fighting Multicollinearity in Double Selection



Problem statement Methodology Objectives Simulation exercises Simulation results Real data results References

General objective

Propose a double post MC3 estimators based on local and non local
prior distributions, and compare its performance with the frequentist

counterpart under different multicollinearity degrees.X
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Specific objectives

Implement the post double selection and MC3 on simulations

exercises. X
Gather real information as in Donohue III and Levitt [2001], and

use both methodologies.X
Compare both methodologies and analyse how they perform

based on simulation and real cases. X
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Simulation settings

Considering (7) and (8) we define dim(xi) = 40 , α = 0, βg such that
there are only eigth non zero coefficients and βm with only four non
zero coefficients.
We also define:
xi1 = N10(0,Σ)
xi2 = N5(0, I )
xi3 = xi ,j = fj(xi1, xi2) ∀j ∈ {1, 2, ..., 25}
where fj is a non linear function so that in X3 there are high order
terms of X1 and X2 and interactions between them, let define:
xi = (xi1, xi2, xi3)
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Simulation settings

We define three different types of Σ to generate xi1

1 Σ so that σij ∈ (0.5, 0.9) (defined as type 1).

2 Σ so that σij ∈ (0, 0.5) (defined as type 2).

3 Σ = I10 (defined as type 3).

we consider the case where the sample size n is 50, 100 or 500.
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Simulation settings

Finally we define our simulation as:

yi =0.8x1,i + 0.8x2,i + 0.5x5,i − 0.7x10,i

+ 0.8x11,i + 0.4x15,i − 0.5x25,i + 0.7x35,i + εi (9)

di =0.6x1,i + 0.8x8,i + 0.9x11,i − 0.5x18,i + ζi (10)

were both, ε and ζ are white noises
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Multicollinearity levels

Table: Multinollinearity level

Measure Type 1 Type 2 Type 3

n = 50
VIF 167.34 14.56 9.31
Condition number 318.90 61.03 47.76

n = 100
VIF 81.50 4.11 2.86
Condition number 152.40 18.56 17.75

n = 500
VIF 8.23 2.34 1.65
Condition number 21.42 7.61 5.81
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Performance with
σXβ

σε
= 1, type 1

MSE MAE Range NR Rate

n = 50
PD T 0.355 0.487 1.667 0.824
PD LASSO 0.376 0.536 1.510 0.746
PD L prior 0.204 0.351 1.755 0.949
PD NL Prior 0.068 0.201 0.991 0.94
PD Oracle 0.204 0.361 1.812 0.947

n = 100
PD T 0.094 0.247 0.808 0.806
PD LASSO 0.093 0.240 0.952 0.867
PD L prior 0.038 0.153 0.762 0.951
PD NL Prior 0.038 0.154 0.764 0.951
PD Oracle 0.037 0.154 0.775 0.951

n = 500
PD T 0.008 0.071 0.355 0.946
PD LASSO 0.008 0.070 0.355 0.949
PD L prior 0.006 0.064 0.327 0.96
PD NL Prior 0.008 0.070 0.354 0.948
PD Oracle 0.008 0.070 0.352 0.948
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Performance with
σXβ

σε
= 1, type 2

MSE MAE Range NR Rate

n = 50
PD T 0.081 0.236 0.812 0.796
PD LASSO 0.111 0.301 0.685 0.619
PD L prior 0.041 0.160 0.772 0.941
PD NL Prior 0.070 0.210 1.060 0.946
PD Oracle 0.045 0.168 0.801 0.940

n = 100
PD T 0.028 0.134 0.597 0.917
PD LASSO 0.052 0.182 0.792 0.912
PD L prior 0.022 0.120 0.592 0.951
PD NL Prior 0.023 0.122 0.592 0.952
PD Oracle 0.023 0.120 0.594 0.952

n = 500
PD T 0.004 0.051 0.270 0.966
PD LASSO 0.004 0.051 0.270 0.957
PD L prior 0.006 0.059 0.306 0.955
PD NL Prior 0.004 0.050 0.268 0.963
PD Oracle 0.004 0.050 0.227 0.965
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Performance with
σXβ

σε
= 1, type 3

MSE MAE Range NR Rate

n = 50
PD T 0.087 0.230 1.085 0.920
PD LASSO 0.047 0.169 0.965 0.971
PD L prior 0.084 0.228 1.103 0.927
PD NL Prior 0.061 0.193 0.928 0.956
PD Oracle 0.081 0.226 1.119 0.948

n = 100
PD T 0.008 0.072 0.340 0.951
PD LASSO 0.016 0.101 0.431 0.917
PD L prior 0.007 0.068 0.328 0.950
PD NL Prior 0.008 0.070 0.330 0.943
PD Oracle 0.007 0.068 0.328 0.943

n = 500
PD T 0.003 0.050 0.219 0.949
PD LASSO 0.003 0.045 0.219 0.941
PD L prior 0.003 0.046 0.227 0.947
PD NL Prior 0.003 0.045 0.218 0.946
PD Oracle 0.003 0.045 0.218 0.948
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Summary

So far those results show that the most important parameters for a
good inference over α is the sample size, in fact, no procedure is very
sensible to the signal to noise ratio. The results show that, as
expected, they may vary as the level of mulltycolinearity increases.
The results show that there are not significant differences between
estimation results when n = 500.
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Model formulation

Donohue III and Levitt [2001] model has the following form:

ycit = αcacit + w
′

itβc + δci + γct + εcit (11)

where i is the index for state, t index of time and
c ∈ {violence, property , murder} is the index of type of crime, εcit
the error, δci are state-specific effects for time invariant state specific
characteristics, γct are time specifics effects, wit is a set of control
variables and finally acit is a measure of abortion rate relevant for
type of crime c
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Which were those controls wit?

The set of control variables that where used were the log of lagged
prisoners per capita, the log of lagged police per capita, the
unemployment rate, per-capita income, the poverty rate, AFDC (Aid
to Families with Dependent Children) generosity at time t − 15, a
dummy for concealed weapons law, and beer consumption per capita.
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Another aproach

Belloni et al. [2014] consider the following model on first differences

ycit − yci(t−1) = αc(acit − aci(t−1)) + z
′

citβc + δci + gct + ηcit (12)

where gct are time effects and ηcit is the error for this case. They also
consider zcit to have a richer set of controls, zcit includes higher order
terms and interaction between the originals control variables, they
also considered initial conditions of wit (the original set of controls)
and acit and average by states of wit .
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PD Selection?

On this new model they also said that abortion rate should be taken
as exogenous conditioned to the data at a given time. That leads to
the possibility of an auxiliary equation and then a possible double
selection procedure in order to have a better inference on αc .
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Comparing results

Table: Inference on the impact abortion over crime rates

Violent crime Property crime Murder
Effect s.e(α̂) Effect s.e(α̂) Effect s.e(α̂)

Donohue III and Levitt [2001] -0.129 0.024 0.091 0.018 -0.121 0.047
First-difference -0.152 0.034 -0.108 0.022 -0.204 0.068
Belloni et al. [2014] PD LASSO -0.104 0.107 0.030 0.055 -0.125 0.151
PD local prior 0.096 0.387 -0.143 0.119 1.059 1.712
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What happened?

After model selection procedures both, the PD LASSO and MC 3, the
results shows that the abortion rates are not significant, and therefore
implies that there is no real impact of the abortion rate over the
crime rates and the true reason were other controls, in other words, it
is true that there is evidence in favor of Donohue III and Levitt [2001]
statement but, apparently, that happened by indirect reason and the
real (direct) reason were hide on the controls proposed by Belloni
et al. [2014].
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Any questions?

Mateo Graciano-Londoño and Andrés Raḿırez-Hassan Fighting Multicollinearity in Double Selection


	Problem statement
	Methodology
	Objectives
	Simulation exercises
	Simulation results
	Real data results

