Use of metaheuristic methods in the estimation of indices of non-normal processes Research practice I: Project proposal presentation

Andrea Molina-Alonso¹ Myladis Rocio Cogollo-Flórez²

¹Responsible amolin13@eafit.edu.co

²Tutor mcogollo@eafit.edu.co

EAFIT University Mathematical Engineering Department of Mathematical Sciences September 4, 2015

Process monitoring using the Burr XII distribution

Taken from www.topkaizen.com

Improvements:

- Liu and Chen modify the Clements method [Liu and Chen, 2006].
- Ahmad, Abdollahian, and Zeephongseku show that the method of Burr is better [Ahmad et al., 2008].
- Abbasi uses a neural network type Multilayer perceptron (MLP) to estimate the distribution parameters [Abbasi et al., 2010].

BUT...

Process monitoring using the Burr XII distribution

there is not direct method of estimation

Skewness	Kurtosis	1	Clements's	8				Burr	
a_3	a_4	$ZP_{.00135}$	ZP.5	ZP.99865	BZP.00135	BZP.5	BZP.99865	C 18 148445	k 0.062932
0	2.2	-2.210	0.000	2.210	-1.959	0.022	2.697	-13.840637	0.093482
0	2.4	-2.442	0.000	2.442	-2.076	0.047	2.911	-12.134081 -11.251863	0.120321
0	2.8	-2.839	0.000	2.839	-2.735	0.0033	2.914	3.938938	19.864823
0	3	-3.000 -3.140	0.000	3.000	-2.884 -3.020	0.010	3.081	4.873717	6.157568 3.745010
0	3.4	-3.261	0.000	3.261	-3.148	0.011	3.340	7.695948	2.700685
0	3.6 3.8	-3.366 -3.458	0.000	3.366 3.458	-3.269 -3.388	0.011	3.442	10.182078 14 723762	2.089559
0 0	4 4.2	-3.539 -3.611	0.000 0.000	3.539 3.611	-3.509 -3.642	0.015 0.001	3.609 3.659	27.068908 -195.260000	1.325754 0.959315

Taken from [Liu and Chen, 2006]

Problem Formulation

 Introduction
 Problem Formulation
 Our Project
 References

 oo
 oo
 oo
 oo

The distribution probability density function is defined by:

$$f(x) = \frac{k \ c \ x^{c-1}}{(1+x^c)^{k+1}}; \quad x > 0, \ c > 0, \ k > 0$$

k: shape parameter.

c: scale parameter.

logarithm of the likelihood function for the Burr XII distribution is:

$$\underbrace{\ln(L) = n(\ln(c) + \ln(k)) + (c-1)\sum_{i=1}^{n} \ln(x_i) - (k+1)\left(\sum_{i=1}^{n} \ln(1+x_i^c)\right)}_{\text{There is not analytical solution}}$$

Our Project 000

Parameter estimation problem

Used methods

- Maximum likelihood
- Pseudo-Maximum likelihood
- Neural network type multilayer perceptron
- Minimum variance linear unbiased estimators

Our Project 000

Parameter estimation problem

Used methods

- Maximum likelihood
- Pseudo-Maximum likelihood
- Neural network type multilayer perceptron
- Minimum variance linear unbiased estimators

Heuristics are not yet considered

Introduction	Problem Formulation	Our Project	References
00		●00	00
Ohiectives			

J

Propose an accurate parameter estimation method for the Burr type XII distribution.

Introduction	Problem Formulation	Our Project	References
		000	
Objectives			

Propose an accurate parameter estimation method for the Burr type XII distribution.

Specific Objectives

• Identify which heuristics methods are appropriate to find a general way to estimate the parameters of the Burr XII distribution.

Introduction	Problem Formulation	Our Project	References
		000	
Objectives			

Propose an accurate parameter estimation method for the Burr type XII distribution.

Specific Objectives

- Identify which heuristics methods are appropriate to find a general way to estimate the parameters of the Burr XII distribution.
- Establish the found estimation method in a programming language.

Introduction	Problem Formulation	Our Project	References
		000	
Objectives			

Propose an accurate parameter estimation method for the Burr type XII distribution.

Specific Objectives

- Identify which heuristics methods are appropriate to find a general way to estimate the parameters of the Burr XII distribution.
- Establish the found estimation method in a programming language.
- Compare the results obtained with the estimation method with other proposed in the literature, using experimental data.

The importance and originality of this research is:

- It is not proposed a precise method of parameter estimation for Burr type XII distribution.
- A suitable monitoring on production processes requires the use of methods that consider all data generating process (DGP).
- Find another estimation method in which the use of tables is not required.

Introduction	Problem Formulation	Our Project	References
00	00	00●	00
<u> </u>			

Sched	lule	of	Activ	vities
Sched	uic		/	1000

Activity	Start	End
Review of literature	July 20	September 29
Proposal report	July 25	August 9
Oral presentation of the proposal report	August 9	August 14
Identification of the method	August 10	September 15
Oral progress report	September 15	September 25
Method implementation	September 15	September 29
Validation with experimental data	September 29	October 15
Project report	August 15	November 6
Project presentation	October 24	November

Table: Schedule of Activities.

Introduction	Problem Formulation	Our Project	References
00		000	●0
References			

Abbasi, B., Hosseinifard, S. Z., and Coit, D. W. (2010). A neural network applied to estimate Burr XII distribution parameters.

Reliability Engineering & System Safety, 95(6):647-654.

- Ahmad, S., Abdollahian, M., and Zeephongsekul, P. (2008). Process capability estimation for non-normal quality charactersitics using Clement, Burr and Box-Cox methods. *ANZIAM Journal*, 49:642–665.
- Liu, P.-H. and Chen, F.-L. (2006).

Process capability analysis of non-normal process data using the Burr XII distribution.

The International Journal of Advanced Manufacturing Technology, 27(9-10):975–984.

Introduction	Problem Formulation	Our Project	References
			00

Thanks for your attention!!

Use of metaheuristic methods in the estimation of indices of non-normal processes.

