ANALYSIS OF PROCESSES CAPABILITY USING THE SKEWED NORMAL DISTRIBUTION

Susana Agudelo Jaramillo Myladis Rocio Cogollo Flórez

> Research Practice I EAFIT University August 14th, 2015

PROCESS CAPABILITY INDICES REQUIRES NORMALITY

In practice there are interest variables that do not follow a normal distribution.

$$C_p = \frac{USL - LSL}{6 \ \sigma}$$

Traditional process capability indices are sensitive to non-normality of data.

CONTENT

 Limitations of process capability indices calculation for non-normal processes.

Level of importance of this research.

Objectives.

Activity schedule.

HOW NON-NORMAL PROCESSES ARE MONITORED?

[1] Korkusuz, D. (2011). "Process Capability Analysis for Non-normal Processes with Lower Specification Limits" (Master's Thesis). Chalmers University of Technology.

ONLY POSITIVE ASYMMETRY DISTRIBUTIONS HAVE BEEN USED

The probability density functions were taken from: www.wikipedia.com

SKEWED NORMAL DISTRIBUTION —SND-

The probability density function associated to a random variable with a Skewed Normal distribution is as follows [2]:

$$f(x) = \frac{1}{\omega \pi} e^{-\frac{(x-\xi)^2}{2\omega^2}} \int_{-\infty}^{\alpha \left(\frac{x-\xi}{\omega}\right)} e^{-\frac{t^2}{2}} dt$$
 Where ξ is a position parameter ω is a scaling parameter ω is a shape parameter

 ξ is a position parameter α is a shape parameter

 $\alpha < 0 \longrightarrow Positive asymmetry$

 $\alpha = 0$ \longrightarrow Symmetry

 $\alpha > 0$ — Negative asymmetry

[2] Figueiredo, F. and Gomes, I. (2011) "The skew-normal distribution in SPC". National Funds through Fundação para a Ciência e a Tecnologia.

SKEWED NORMAL DISTRIBUTION —SND-

The probability density function associated to a random variable with a Skewed Normal distribution is as follows [2]:

$$f(x) = \frac{1}{\omega \pi} e^{-\frac{(x-\xi)^2}{2\omega^2}} \int_{-\infty}^{\alpha \left(\frac{x-\xi}{\omega}\right)} e^{-\frac{t^2}{2}} dt$$
 Where ξ is a position parameter ω is a scaling parameter ω is a shape parameter

 α is a shape parameter

SND HAS NOT BEEN USED IN THE PROCESS **CAPABILITY INDICES**

[2] Figueiredo, F. and Gomes, I. (2011) "The skew-normal distribution in SPC". National Funds through Fundação para a Ciência e a Tecnologia.

LEVEL OF IMPORTANCE OF THIS RESEARCH

The importance and originality of this research are based on these facts:

- 1. According to the systematic literature review, there are no proposals for estimating process capability indices under Skewed Normal distribution.
- 2. The asymmetrical flexibility given by the Skewed Normal distribution will render its worth by giving robust process capability indices and making easier the data fitting.

OBJECTIVES

Main objective:

Develop capability indices for processes with non-normal data using Skewed Normal distribution.

Specific objectives:

- Identify methods to estimate process capability indices associated with non-normal data.
- Select one of these methods and adapt it to the Skewed Normal distribution.
- Develop the proposed methodology in a programming language.
- Compare the proposed methodology performance against conventionally used methods reported in literature.

ACTIVITY SCHEDULE

Activity	Semester Week	Dates
Literature review.	1-5	July 21 – August 23
Methods adaptation to the Skewed Normal distribution.	6 – 9	August 24 – September 20
Implementation by means of a programming language.	8 – 11	September 7 – October 4
Selected methods performance comparison against conventionally used methods reported in literature.	12 – 14	October 5 – October 25
Project report.	15 – 16	October 26 – November 8
Project presentation.	17 – 19	November 9 – November 27

THANKS FOR YOUR ATTENTION

