Proof Reconstruction: Translating Proofs

Alejandro Gémez-Londoiio

Advisor - Andrés Sicard-Ramirez

EAFIT University

August 18, 2015

Introduction

A (very) general idea of the context

Introduction

Proof assistants

An interactive prover is a software tool aiding the
development of formal proofs by man-machine
collaboration.

Matita development team, Matita website,
http://matita.cs.unibo.it/index.shtml

http://matita.cs.unibo.it/index.shtml

Introductions

Automated Theorem Proving (ATP)

Deals with the development of computer programs
that show that some statement (the conjecture) is a
logical consequence of a set of statements (the axioms
and hypotheses).

%http:/ /www.cs.miami.edu/~tptp/OverviewOfATP.html

http://www.cs.miami.edu/~tptp/OverviewOfATP.html

Introduction

ATPs input/output

= —i—

3Sutcliffe, G. The TPTP Problem Library and Associated In-frastructure:
The FOF and CNF Parts. 2009.

Introduction

Examples

ATPs: Proof assistants:
m Vampire m Coq
m E m Agda
m Metis m Isabelle
m SPASS m Mizar
m Equinox m NuPRL

Introduction

Introduction

reconstruction \

translation

Introduction

4

Interactive Hammer Automatic

premise selector

/ reconstruction \ Jv

translation _/

*Jasmin C. Blanchette, Cezary Kaliszyk and Lawrence C. Paulson,
Hammering towards QED. 2014.

Proof reconstruction

Example

m Hand written proof

X Y
XNy XNy =2z
z

m TPTP problem

fof(a_0,axiom,x)
fof(a_1,axiom,y)
fof(a 2,axiom, ((x & y) => z)).
fof(c_0,conjecture, z).

Proof reconstruction

Example

m TSTP proof

fof(s_0,plain, (x & y),
inference(conjunction,[],[a_0,a_1])).

fof(s_1,plain, (z),
inference(modus_ponens,[],[a_2,s_0])).

fof(r_0,plain, ($true),
inference(simplify,[],[s 1,c 0])).

Proof reconstruction

Example

m Agda proof

--conjunction
data A _ (P : Set) (Q : Set) : Set where
A-intro : P A Q A (P A Q)

proof : { XY Z : Set} —
X =Y = (XAY =2Z) = Z
proof x y f=f (A-intro x vy)

Proof reconstruction

Implementation

Reconstruction

= — -2

TSTP Agda

Proof reconstruction

Parser and AST construction

fof(a_0,axiom,Xx).
fof(a_1,axiom,y).

fof(a_2,axiom, ((x & y) => z)).
fof(c_0,conjecture, z).

fof(s_0,plain, (x & vy),
inference(conjunction,[],[a 0,a 1])).

fof(s_1,plain, (z),
inference(modus ponens,[],[a 2,s 0])).

fof(r_0,plain, ($true),
inference(simplify,[],[s 1,c 0])).

Proof reconstruction

Parser and AST construction

[

F {name = "s_0",
role = Plain,
formula = "x" (:&:) "y",
annotations = Conjunction ["a 0","a 1"]
}I
F {name ="s 1",
role = Plain,
formula = "z",
annotations = ModusPonens ["a 2","s 0"]
}I
F {name ="r 0",
role = Plain,
formula = "$True",
annotations = Simplify ["s 1", "c 0"]

}

Proof reconstruction

DAG

Simplify

Past results

Haskell and Agda were chosen as the programing languages for the
implementation.

m Haskell was used for parsing and AST construction

m In Agda we will create and analyze the DAG.

Past results

Metis® was chosen as our ATP
Uses TPTP as input format.
Outputs proofs in TSTP format.

| |
m Each refutation step is one of 6 rules.
| |

Has respectable performance.

®Joe Hurd. First-Order Proof Tactics in Higher-Order Logic Theorem
Provers. 2003.

Past results

A modified version of the Logic-tptp® Haskell library was used
to implement a TSTP parser capable of analyze Metis proofs.

m This project is freely available on github’.

®https://hackage.haskell.org/package/logic- TP TP
"https://github.com/agomezl /tstp2agda

https://hackage.haskell.org/package/logic-TPTP
https://github.com/agomezl/tstp2agda

Objectives

Translate into idiomatic Agda code the AST resulting from the
parsing of an ATP-generated proof.

m Translate to Agda code the Haskell AST data type.

m Build an Agda library that implements the logical kernel of the
ATP.

m Reconstruct the proof in Agda using the aforementioned
library.

