
Proof Reconstruction: Translating Proofs

Alejandro Gómez-Londoño

Advisor - Andrés Sicard-Raḿırez

EAFIT University

August 18, 2015

Introduction
A (very) general idea of the context

Proof assistant ATP

Introduction
Proof assistants

An interactive prover is a software tool aiding the
development of formal proofs by man-machine
collaboration.1

1Matita development team, Matita website,
http://matita.cs.unibo.it/index.shtml

http://matita.cs.unibo.it/index.shtml

Introductions
Automated Theorem Proving (ATP)

Deals with the development of computer programs
that show that some statement (the conjecture) is a
logical consequence of a set of statements (the axioms
and hypotheses).2

2http://www.cs.miami.edu/∼tptp/OverviewOfATP.html

http://www.cs.miami.edu/~tptp/OverviewOfATP.html

Introduction
ATPs input/output

ATP

TPTP 3 TSTP

3Sutcliffe, G. The TPTP Problem Library and Associated In-frastructure:
The FOF and CNF Parts. 2009.

Introduction
Examples

ATPs:

Vampire

E

Metis

SPASS

Equinox

Proof assistants:

Coq

Agda

Isabelle

Mizar

NuPRL

Introduction

Proof assistant ATP

Introduction

Proof assistant ATP

translation

reconstruction

Introduction

Interactive AutomaticHammer 4

reconstruction

Proof assistant ATP

translation

premise selector

4Jasmin C. Blanchette, Cezary Kaliszyk and Lawrence C. Paulson,
Hammering towards QED. 2014.

Proof reconstruction
Example

Hand written proof

x y
x ∧ y x ∧ y ⇒ z

z
TPTP problem

fof(a_0,axiom,x).
fof(a_1,axiom,y).
fof(a_2,axiom, ((x & y) => z)).
fof(c_0,conjecture, z).

Proof reconstruction
Example

TSTP proof

fof(s_0,plain,(x & y),
inference(conjunction,[],[a_0,a_1])).

fof(s_1,plain,(z),
inference(modus_ponens,[],[a_2,s_0])).

fof(r_0,plain,($true),
inference(simplify,[],[s_1,c_0])).

Proof reconstruction
Example

Agda proof

--conjunction
data _ ∧ _ (P : Set) (Q : Set) : Set where

∧ -intro : P ∧ Q ∧ (P ∧ Q)

proof : { X Y Z : Set} →
X → Y → (X ∧ Y → Z) → Z

proof x y f = f (∧ -intro x y)

Proof reconstruction
Implementation

Reconstruction

TSTP

Parser AST DAG

Agda

Proof reconstruction
Parser and AST construction

fof(a_0,axiom,x).
fof(a_1,axiom,y).
fof(a_2,axiom, ((x & y) => z)).
fof(c_0,conjecture, z).

fof(s_0,plain,(x & y),
inference(conjunction,[],[a_0,a_1])).

fof(s_1,plain,(z),
inference(modus_ponens,[],[a_2,s_0])).

fof(r_0,plain,($true),
inference(simplify,[],[s_1,c_0])).

Proof reconstruction
Parser and AST construction

[
F {name = "s_0",

role = Plain,
formula = "x" (:&:) "y",
annotations = Conjunction ["a_0","a_1"]
},

F {name = "s_1",
role = Plain,
formula = "z",
annotations = ModusPonens ["a_2","s_0"]
},

F {name = "r_0",
role = Plain,
formula = "$True",
annotations = Simplify ["s_1", "c_0"]
}

]

Proof reconstruction
DAG

x y x ∧ y ⇒ z

x ∧ y

z

true

Conjunction

Modus ponens

Simplify

Past results

Haskell and Agda were chosen as the programing languages for the
implementation.

Haskell was used for parsing and AST construction

In Agda we will create and analyze the DAG.

Past results

Metis5 was chosen as our ATP

Uses TPTP as input format.

Outputs proofs in TSTP format.

Each refutation step is one of 6 rules.

Has respectable performance.

5Joe Hurd. First-Order Proof Tactics in Higher-Order Logic Theorem
Provers. 2003.

Past results

A modified version of the logic-tptp6 Haskell library was used
to implement a TSTP parser capable of analyze Metis proofs.

This project is freely available on github7.

6https://hackage.haskell.org/package/logic-TPTP
7https://github.com/agomezl/tstp2agda

https://hackage.haskell.org/package/logic-TPTP
https://github.com/agomezl/tstp2agda

Objectives

Translate into idiomatic Agda code the AST resulting from the
parsing of an ATP-generated proof.

Translate to Agda code the Haskell AST data type.

Build an Agda library that implements the logical kernel of the
ATP.

Reconstruct the proof in Agda using the aforementioned
library.

