Introduction Procedure and Development Discretization Numerical Results Implementation for Real Option 000

Real Options Valuation for Mining Projects Using a Proposed Numerical Schema Based on Finite Difference Method

J. Mauricio Cuscagua-Lopez Fredy H. Marín-Sanchez

Research Practise 1: Progress Presentation Mathematical Engineering

October 2, 2015

Financial Options Valuation

Let f be the price of an option. To calculate its price the following Partial Differential Equation must be solved [Black and Scholes, 1973]:

$$\frac{\partial f}{\partial t} + \frac{1}{2}\sigma^2 s^2 \frac{\partial^2 f}{\partial s^2} + rs \frac{\partial f}{\partial s} = rf \tag{1}$$

where f is the price of the Option, S is the price of the underlying, σ is the volatility of the underlying and r is the free interest rate risk.

Introduction	Procedure and Development	Discretization	Numerical Results	Implementation for Real Option
$\circ \bullet$	0000	000	00	000

Variable Changes

In search of the calculation for (1) easier, consider the following change of variable.

$$H = e^{r(\tau - t)} f$$

$$X = e^{r(\tau - t)} s$$
(2)

Where H: H(X, t) and τ is the maturity time.

Finding the Partial Derivatives I

Deriving (2) we obtain:

$$\frac{\partial f}{\partial t} = e^{-r(\tau-t)} f \frac{\partial H}{\partial t} + r e^{-r(\tau-t)} f \tag{3}$$

Applying the Chain Rule we know that:

$$\frac{\partial H}{\partial t} = \frac{\partial H}{\partial X} \frac{\partial X}{\partial t} + \frac{\partial H}{\partial t} \frac{\partial t}{\partial t}$$
(4)

where

$$\frac{\partial X}{\partial t} = -re^{r(\tau-t)}s = -rX \tag{5}$$

Replacing (4) and (5) in (3) we get:

$$\frac{\partial f}{\partial t} = e^{-r(\tau-t)} \left(-rX\frac{\partial H}{\partial X} + \frac{\partial H}{\partial t}\right) + rHe^{-r(\tau-t)} \tag{6}$$

Finding the Partial Derivatives II

However, from the expression to H in (2) we have:

$$\frac{\partial f}{\partial s} = e^{-r(\tau - t)} \frac{\partial H}{\partial s} \tag{7}$$

Similar than (4) we know:

$$\frac{\partial H}{\partial s} = \frac{\partial H}{\partial X} \frac{\partial X}{\partial s} + \frac{\partial H}{\partial t} \frac{\partial t}{\partial s} \tag{8}$$

We also know, from deriving (2), that $\frac{\partial X}{\partial s} = e^{r(\tau-t)}$. Using this and (8) in (7) we obtain:

$$\frac{\partial f}{\partial s} = \frac{\partial H}{\partial X} \tag{9}$$

To calculate $\frac{\partial^2 f}{\partial s^2}$ it is enough to derive (9). Thus:

Introduction **Procedure and Development** Discretization Numerical Results Implementation for Real Option 000

Finding the Partial Derivatives III

$$\frac{\partial^2 H}{\partial s^2} = \frac{\partial}{\partial X} \left(\frac{\partial H}{\partial X}\right) = \frac{\partial}{\partial X} \left(\frac{\partial H}{\partial X}\right) \frac{\partial X}{\partial s} + \frac{\partial}{\partial t} \left(\frac{\partial H}{\partial X}\right) \frac{\partial t}{\partial s}$$
(10)
Finally:

$$\frac{\partial^2 f}{\partial s^2} = e^{r(\tau-t)} \frac{\partial^2 H}{\partial s^2} \tag{11}$$

Introduction	Procedure and Development	Discretization	Numerical Results	Implementation for Real Option
00	0000	000	00	000

The Alternative PDE

Using the results in (6), (9) and (11) in (1) we have:

$$e^{-r(\tau-t)}\left(-rX\frac{\partial H}{\partial X} + \frac{\partial H}{\partial t}\right) + rHe^{-r(\tau-t)} + rXe^{-r(\tau-t)}\frac{\partial H}{\partial X}$$
(12)
$$+\frac{1}{2}\sigma^{2}e^{-2r(\tau-t)}X^{2}e^{r(\tau-t)}\frac{\partial^{2}H}{\partial X^{2}} = rHe^{-r(\tau-t)}$$

Organizing the terms:

$$\frac{\partial H}{\partial t} + \frac{1}{2}\sigma^2 X^2 \frac{\partial^2 H}{\partial X^2} = 0 \tag{13}$$

Introduction	Procedure and Development	Discretization	Numerical Results	Implementation for Real Option
00	0000	00	00	000

Derivatives Discretization

The Finite Difference method sets the following expressions to sample the derivatives [Hull, 2006].

$$\frac{\partial H}{\partial t} = \frac{H_{i+1,j} - H_{i,j}}{\Delta t}$$

$$\frac{\partial H}{\partial X} = \frac{H_{i+1,j+1} - H_{i+1,j-1}}{2\Delta X}$$

$$\frac{\partial^2 H}{\partial X^2} = \frac{H_{i+1,j+1} + H_{i+1,j-1} - 2H_{i+1,j}}{\Delta X^2}$$
(14)

Derivatives Discretization

Using the above expressions in (13), it is obtained the numerical schema

$$H_{i,j} = a_i H_{i+1,j+1} + b_i H_{i+1,j-1} + c_i H_{i+1,j}$$
(15)
where $a_i = b_i = \frac{1}{2} \sigma^2 i^2 \Delta t$ and $c_i = (1 - \sigma^2 i^2 \Delta t)$

Note

The coefficients in 15 can be viewed as weights and probability. Note that if $\Delta t \to 0$ then the sum of the weights $\Sigma \to 1$.

Introduction	Procedure and Development	Discretization	Numerical Results	Implementation for Real Op	$_{ m tion}$
00	0000	000	00	000	

Boundary Conditions

For the practice, we'll take an European Call option. Thus:

• If
$$S = Smax \Rightarrow f = K \Rightarrow H = e^{r(\tau - t)}K$$

• If
$$S = 0 \Rightarrow f = 0 \Rightarrow H = 0$$

• If
$$t = \tau \Rightarrow f = max(S - K, 0) \Rightarrow H = e^{r(\tau - t)}max(S - K, 0)$$

Finite Difference Method for Original PDE

Figure 1: Numerical results for a *call* option with r = 0.05, $\sigma = 0.025$ and k = 100. Taken from [Velásquez et al., 2015]

Finite Difference Method for the Alternative PDE

Figure 2: Numerical results for a *call* option with r = 0.05, $\sigma = 0.025$ and k = 100

Introduction	Procedure and Development	Discretization	Numerical Results	Implementation for Real Option
00	0000	000	00	$\odot \odot \odot$

Mining Projects

From [Haque et al., 2014] we've taken the PDE which describes the value for a gold mine when it's opened.

$$\frac{1}{2}P^2\sigma^2\frac{\partial^2 V}{\partial P^2} - q\frac{\partial V}{\partial Q} + (r-\delta)P\frac{\partial V}{\partial P} - (r+\lambda_c)V + q(P-C)(1-G) = 0 \quad (16)$$

dividing by -q and taking $\gamma^2 = -\frac{\sigma^2}{q}$, $\rho = -\frac{r-\delta}{q}$, $\rho^* = -\frac{r-\lambda_c}{q}$ and g = 1 - G

Introduction	Procedure and Development	Discretization	Numerical Results	Implementation for Real Optio
00	0000	000	00	000

Mining Projects

See that (16) can be expressed as:

$$\frac{1}{2}\gamma^2 P^2 \frac{\partial^2 V}{\partial P^2} + \frac{\partial V}{\partial Q} + \rho P \frac{\partial V}{\partial P} = \rho^* V + g(P - C)$$
(17)

where P is the price of gold, Q is the total reserve of gold, q is the average gold production rate, C is the total cost, G is the Corporate taxes, δ is the country risk, σ is the gold price volatility, λ_c is the convenience yield for holding gold and r is the Risk free rate.

Introduction	Procedure and Development	Discretization	Numerical Results	Implementation for Real Option
00	0000	000	00	$\circ \circ \bullet$

Mining Projects

Following the methodology described before, we obtain:

$$\frac{1}{2}\gamma^2 X^2 \frac{\partial^2 H}{\partial X^2} + \frac{\partial H}{\partial Q} = (\rho^* - \rho)H + g(X - Ce^{\rho(\Phi - Q)})$$
(18)

where Φ is the maximum reserve of gold for the mine.

Introduction	Procedure and Development	Discretization	Numerical Results	Implementation for Real Option
00	0000	000	00	000

Schedule

Activity	Estimated Time Range
Literature Review. \checkmark	Jul. 21 - Aug. 8
Applying the numerical scheme	
to Black-Scholes' equation. Make	Aug. 10 - Aug. 21
simulations and tests. \checkmark	
Determine the convergence,	
consistency and stability of the	Aug. 21 - Oct. 3
numerical schema. working on it	
Applying the numerical scheme	
to specifics PDE from the literature	Oct 3 Oct 15
of interest. Make simulations	$\mathbf{O}(\mathbf{U}, \mathbf{J} - \mathbf{O}(\mathbf{U}, \mathbf{I}))$
and tests.	
Extra work.	Oct. 16 - Nov. 3

Introduction	Procedure and Development	Discretization	Numerical Results	Implementation for Real Opti	loi
00	0000	000	00	000	

References I

Black, F. and Scholes, M. (1973).

The pricing of options and corporate liabilities. The Journal of Political Economy, pages 637–654.

Haque, M. A., Topal, E., and Lilford, E. (2014).

A numerical study for a mining project using real options valuation under commodity price uncertainty.

Resources Policy, 39:115–123.

Hull, J. C. (2006).

Options, futures, and other derivatives. Pearson Education India.

Velásquez, M., Rojas, A., and Cuscagua, M. (2015).

Diferencias finitas explícitas y otros métodos para la valoración de opciones financieras. Final report stochastics processes 2.