ANALYSIS OF PROCESSES CAPABILITY USING THE SKEWED NORMAL DISTRIBUTION

Susana Agudelo Jaramillo

Myladis Rocio Cogollo Flórez Juan Miguel Cogollo Flórez

> Research Practise 1 EAFIT University October 16th, 2015

Process capability indices requires normality

Methods to estimate process capability indices associated with non-normal data

Clements's percentile method:

It calculates the indices using a family of Pearson curves [1]. Box-Cox transformation method:

It consists of an initial data transformation followed by the application of conventional methods to resulting data considered as normal [2].

Clements, J. A. (1989). "Process capability indices for non-normal calculations". Quality Progress, 22, 49-55.
Ahmad, S., Abdollahian, M. and Zeephongsekul, P. (2008). "Process capability estimation for non – normal quality characteristics: A comparison of Clements, Burr and Box – Cox Methods". ANZIAM Journal, 49, 642–665.

Clements's percentile method

Index [1]	Normal	Non-Normal
Potential process capability index.	$C_p = \frac{USL - LSL}{6\sigma}$	$C_p = \frac{USL - LSL}{P_{0.99865} - P_{0.00135}}$
Capability index for the lower specification level.	$C_{pl} = \frac{\mu - LSL}{3\sigma}$	$C_{pl} = \frac{P_{0.5} - LSL}{P_{0.5} - P_{0.00135}}$
Capability index for the upper specification level.	$C_{pu} = \frac{USL - \mu}{3\sigma}$	$C_{pu} = \frac{USL - P_{0.5}}{P_{0.99865} - P_{0.5}}$
Real process capability index.	$C_{pk} = min\{C_{pl}, C_{pu}\}$	$C_{pk} = min\{C_{pl}, C_{pu}\}$

- Where: μ : real mean
- USL and LSL: upper and lower specification limits
- σ^2 : real variance P_q : q percentile, with 0 < q < 1

[1] Clements, J. A. (1989). "Process capability indices for non-normal calculations". Quality Progress, 22, 49-55.

Skewed Normal distribution

The probability density function associated to a random variable with a Skewed Normal distribution is as follows [3]:

$$f(x) = \frac{1}{\omega\pi} e^{-\frac{(x-\xi)^2}{2\omega^2}} \int_{-\infty}^{\alpha\left(\frac{x-\xi}{\omega}\right)} e^{-\frac{t^2}{2}} dt$$

Where:

 ξ is a position parameter $\leftrightarrow \mu$ ω is a scaling parameter $\leftrightarrow \sigma$ α is a shape parameter

[3] Figueiredo, F. and Gomes, I. (2011) "The skew-normal distribution in SPC". National Funds through Fundação para a Ciência e a Tecnologia.

Method adaptation in R

Number of studied scenarios = 840

The shape parameter (α) sets a trend in estimates of process capability indices

Index C_{pl} for sample size 50

The shape parameter (α) sets a trend in estimates of process capability indices

Index C_{pu} for sample size 50

The trend continues for different sample sizes

Consistent estimators are obtained for any value of ξ

Inspira Crea Transforma

This consistency is more obvious to the position parameter ω

The consistency of ξ and ω is satisfied for any index

Limits for C_p based on the shape parameter α

There is some symmetric in the index values.

Limits for C_{pk} based on the shape parameter α

Two sets of values are established.

Limits for C_{pl} based on the shape parameter α

There is a cutoff point

Objectives fulfillment

Objectives	Percentage
Identify methods to estimate process capability indices associated with non-normal data.	100%
Select one of these methods and adapt it to the Skewed Normal distribution.	100%
Develop the proposed methodology in a programming language.	80%
Compare the proposed methodology performance against conventionally used methods reported in literature.	10%

THANKS FOR YOUR ATTENTION

Consistent estimators are obtained for any value of ξ

Consistent estimators are obtained for any value of ξ

Consistent estimators are obtained for any value of ω

Inspira Crea Transforma

Consistent estimators are obtained for any value of ω

Inspira Crea Transforma

The snormFit function produces inaccurate estimates of α

