Proof Reconstruction: Translating Proofs Progress Presentation

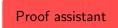
Alejandro Gómez-Londoño

Advisor - Andrés Sicard-Ramírez

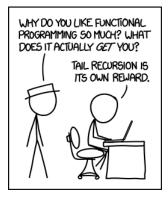
EAFIT University

October 2, 2015

Introduction



Functional Programming¹



¹Randall Munroe, https://xkcd.com/1270

- First class functions.
- Higher-order functions.
- Purity.
- No arbitrary side effects.
- Recursion.
- Pattern matching.
- Type inference.

(They have weird function stuff) (They are complicated) (There are no variables) (Also no easy way to print) (No loops!) (This is actually a good thing) (Type errors everywhere)

Functional Programming

Expressiveness

C++:

```
int mult(int a, int b,int ab, int aX,int bX,int abX){
    int sum;
    for (i=0; i<aX; i++){
        for (j=0; j<bX; j++){
            sum=0;
            for (k=0; k<abX; k++){
                sum += a[i][k] * b[k][j];
            }
            ab[i][j]=sum;
        }
    }
}</pre>
```

Matlab:

A * B

```
Haskell:
```

```
factorial :: Int -> Int
factorial n = foldl (*) 1 [1..n]
fib = [Int]
fib = 0:1:zipWith (+) fib (tail fib)
main :: I0 ()
main = scotty 80 $ do
  get "/" $ html "<h1> Hello world </h1>"
  get "/:name" $ do
    name <- param "name"
    html $ mconcat ["<h1>Hello, ", name, "</h1>"]
```

"In programming languages, a type system is a collection of rules that assign a property called type to various constructs a computer program consists of." ²

²Wikipedia contributors, *Type system*. September 28, 2015.

```
Int a
a :: Int
int[]
[Int]
(String) "SOME BAD JOKE"
"SOME OTHER BAD JOKE" :: String
Int fact(Int a, Int b)
fact :: Int -> Int
```

Functional Programming Type systems (Soundness)

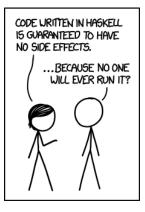
```
C++
int foo(int a, int b){
....
}
Haskell:
foo :: Int -> Int -> Int
foo ...
```

Functional Programming Type systems (Soundness)

```
C++:
int foo(int a, int b){
   System.Weapons.Launch.Nuke()
   return a + b;
}
Haskell:
foo :: Int -> Int -> Int
foo a b = a + b --No bomb! see!
```

Functional Programming ³

Type systems + Expressiveness (+ some more complicated stuff)



³Randall Munroe, https://xkcd.com/1312

Functional Programming

Type systems + Expressiveness (+ some more complicated stuff)

- Programs are in general safer.
- Less lines of code more work done!
- Reusable code.
- Quick prototyping.
- Easier parallelism.

Dependently typed functional programming languages That name is really long! that should mean something bad is about to happen!

Wat?

"Dependent types allow types to be predicated on values, meaning that some aspects of a program's behaviour can be specified precisely in the type." 4

```
xs : List Bool
[]
[true,false]
```

⁴Idris contributors, http://www.idris-lang.org. September 28 2015.

Haskell:

tail :: [a] -> [a] tail [] = [] tail (x:xs) = xs head :: [a] -> a -- head [] = ?? head (x:xs) = x Agda: tail : $\forall \{A\} \rightarrow \text{List } A \rightarrow \text{List } A$ tail [] = [] tail (x:xs) = xs head : $\forall \{A\} \rightarrow \text{List } A \rightarrow A$ -- head [] = ?? head (x:xs) = x "The Curry–Howard isomorphism, tells us that in order to prove any mathematical theorem, all we have to do is construct a certain type which reflects the nature of that theorem, then find a value that has that type." 5

Proofs as programs!

⁵Wikibooks contributors, *Haskell/The Curry–Howard isomorphism*. September 28 2015.

Dependently typed functional programming languages Curry-Howard correspondence

Hand written:

$$\begin{array}{ccc} x & y & x \land y \Rightarrow z \\ \hline z \end{array}$$

Agda:

proof : \forall { X Y Z } \rightarrow X \rightarrow Y \rightarrow (X \wedge Y \rightarrow Z) \rightarrow Z

Dependently typed functional programming languages

Hand written proof:

$$\frac{x \quad y}{x \land y} \quad x \land y \Rightarrow z$$

Agda proof:

proof : \forall { X Y Z } \rightarrow X \rightarrow Y \rightarrow (X \wedge Y \rightarrow Z) \rightarrow Z proof x y f = f (\wedge -intro x y)

Dependently typed functional programming languages Languages as proof assistants

"proof assistants or interactive theorem provers are a software tools to assist with the development of formal proofs." $^{\rm 6}$

⁶Wikipedia contributors, *Proof assistant*. September 28 2015.

"Deals with the development of computer programs that show that some statement (the conjecture) is a logical consequence of a set of statements (the axioms and hypotheses)." 7

⁷Geoff Sutcliffe's, *What is Automated Theorem Proving*?. September 28 2015.

Hand written proof:

$$\frac{x \quad y}{x \land y} \quad x \land y \Rightarrow z$$

TPTP problem:

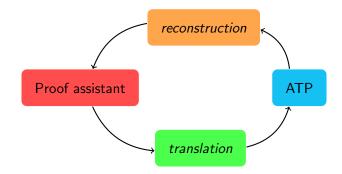
```
fof(a_0,axiom,x).
fof(a_1,axiom,y).
fof(a_2,axiom, ((x & y) => z)).
fof(c_0,conjecture, z).
```

Automated reasoning ATPs

Proof:

```
fof(al, axiom, (x)).
fof(a2, axiom, (y)).
fof(a3, axiom, ((x \& y) \Rightarrow z)).
fof(a4, conjecture, (z)).
fof(subgoal 0, plain, (z), inference(strip, [], [a4])).
fof(negate 0 0, plain, (~ z), inference(negate, [], [subgoal 0])).
fof(normalize 0 0, plain, (~ z),
    inference(canonicalize, [], [negate 0 0])).
fof(normalize 0 1, plain, (x \mid y \mid z),
    inference(canonicalize, [], [a3])).
fof(normalize 0 2, plain, (x), inference(canonicalize, [], [a1])).
fof(normalize 0 3, plain, (y), inference(canonicalize, [], [a2])).
fof(normalize 0 4, plain, (z),
    inference(simplify, [],
              [normalize 0 1, normalize 0 2, normalize 0 3])).
fof(normalize 0 5, plain, ($false),
    inference(simplify, [], [normalize 0 0, normalize 0 4])).
cnf(refute 0 0, plain, ($false),
    inference(canonicalize, [], [normalize 0 5])).
```

Conclusion Proof assistants + ATPs



Conclusion Proof assistants + ATPs

Proof:

```
fof(al. axiom. (x)).
fof(a2, axiom, (y)).
fof(a3, axiom, ((x \& y) \Rightarrow z)).
fof(a4, conjecture, (z)).
fof(subgoal 0, plain, (z), inference(strip, [], [a4])).
fof(negate 0 0, plain, (~ z), inference(negate, [], [subgoal 0])).
fof(normalize 0 0, plain, (~ z),
    inference(canonicalize, [], [negate 0 0])).
fof(normalize 0 1, plain, (x \mid y \mid z),
    inference(canonicalize, [], [a3])).
fof(normalize 0 2, plain, (x), inference(canonicalize, [], [a1])).
fof(normalize 0 3, plain, (y), inference(canonicalize, [], [a2])).
fof(normalize 0 4, plain, (z),
    inference(simplify, [],
              [normalize 0 1, normalize 0 2, normalize 0 3])).
fof(normalize 0 5, plain, ($false),
    inference(simplify, [], [normalize 0 0, normalize 0 4])).
cnf(refute 0 0, plain, ($false),
    inference(canonicalize, [], [normalize 0 5])).
```

Agda equivalent proof:

```
proof : \forall \{X \mid Z\} \rightarrow X \rightarrow Y \rightarrow (X \land Y \rightarrow Z) \rightarrow Z
proof { }{ }{ Z} a1 a2 a3 = conclude0
  where
    norm03 = canon3 a2
    norm02 = canon2 a1
    norm01 = canon1 a3
    norm04 = simplify0 norm02 norm03 norm01
    negate0 : \neg Z \rightarrow \perp
    negate0 negatate00 = refute00
       where
         norm00 = id negatate00
         norm05 = simplify1 norm00 norm04
         refute00 = canon4 norm05
    conclude0 = proofByContradiction negate0
```

Agda proof: **proof** : $\forall \{ X Y Z \} \rightarrow X \rightarrow Y \rightarrow (X \land Y \rightarrow Z) \rightarrow Z$ **proof** x y f = f (\land -intro x y)