
Proof Reconstruction: Translating Proofs
Progress Presentation

Alejandro Gómez-Londoño

Advisor - Andrés Sicard-Raḿırez

EAFIT University

October 2, 2015

Introduction

Proof assistant ATP

Functional Programming 1

1Randall Munroe, https://xkcd.com/1270

https://xkcd.com/1270

Functional Programming
Features

First class functions. (They have weird function stuff)

Higher-order functions. (They are complicated)

Purity. (There are no variables)

No arbitrary side effects. (Also no easy way to print)

Recursion. (No loops!)

Pattern matching. (This is actually a good thing)

Type inference. (Type errors everywhere)

Functional Programming

Expressiveness

Functional Programming
Expressiveness

C++:

int mult(int a, int b,int ab, int aX,int bX,int abX){
int sum;
for (i=0; i<aX; i++){
for (j=0; j<bX; j++){
sum=0;
for (k=0; k<abX; k++){
sum += a[i][k] * b[k][j];

}
ab[i][j]=sum;

}
}

}

Functional Programming
Expressiveness

Matlab:

A * B

Haskell:

mmult :: Num a => [[a]] -> [[a]] -> [[a]]
mmult a b = do ar <- a

bc <- transpose b
sum $ zipWith (*) ar bc

Functional Programming
Expressiveness

factorial :: Int -> Int
factorial n = foldl (*) 1 [1..n]

fib = [Int]
fib = 0:1:zipWith (+) fib (tail fib)

main :: IO ()
main = scotty 80 $ do
get "/" $ html "<h1> Hello world </h1>"
get "/:name" $ do
name <- param "name"
html $ mconcat ["<h1>Hello, ", name, "</h1>"]

Functional Programming
Type systems

“In programming languages, a type system is a collection
of rules that assign a property called type to various
constructs a computer program consists of.” 2

2Wikipedia contributors,Type system. September 28, 2015.

https://en.wikipedia.org/wiki/Type_system

Functional Programming
Type systems

Int a
a :: Int

int[]
[Int]

(String) "SOME BAD JOKE"
"SOME OTHER BAD JOKE" :: String

Int fact(Int a, Int b)
fact :: Int -> Int -> Int

Functional Programming
Type systems (Soundness)

C++

int foo(int a, int b){
...
}

Haskell:

foo :: Int -> Int -> Int
foo ...

Functional Programming
Type systems (Soundness)

C++:

int foo(int a, int b){
System.Weapons.Launch.Nuke()
return a + b;

}

Haskell:

foo :: Int -> Int -> Int
foo a b = a + b --No bomb! see!

Functional Programming 3

Type systems + Expressiveness (+ some more complicated stuff)

3Randall Munroe, https://xkcd.com/1312

https://xkcd.com/1312

Functional Programming
Type systems + Expressiveness (+ some more complicated stuff)

Programs are in general safer.

Less lines of code more work done!

Reusable code.

Quick prototyping.

Easier parallelism.

Dependently typed functional programming languages
That name is really long! that should mean something bad is about to happen!

Wat?

Dependently typed functional programming languages

“Dependent types allow types to be predicated on values,
meaning that some aspects of a program’s behaviour can
be specified precisely in the type.” 4

xs : List Bool
[]
[true,false]

xs’ : Vect Bool 2
[] -- no!
[true] -- no!
[true,false] -- yes!

4Idris contributors, http://www.idris-lang.org. September 28 2015.

http://www.idris-lang.org

Dependently typed functional programming languages

Haskell:

tail :: [a] -> [a]
tail [] = []
tail (x:xs) = xs

Agda:

tail : ∀ {A} → List A → List A
tail [] = []
tail (x:xs) = xs

head :: [a] -> a
-- head [] = ??
head (x:xs) = x

head : ∀ {A} → List A → A
-- head [] = ??
head (x:xs) = x

Dependently typed functional programming languages
Curry–Howard correspondence

“The Curry–Howard isomorphism, tells us that in order
to prove any mathematical theorem, all we have to do is
construct a certain type which reflects the nature of that
theorem, then find a value that has that type.” 5

Proofs as programs!

5Wikibooks contributors, Haskell/The Curry–Howard isomorphism.
September 28 2015.

https://en.wikibooks.org/wiki/Haskell/The_Curry-Howard_isomorphism

Dependently typed functional programming languages
Curry–Howard correspondence

Hand written:

x y x ∧ y ⇒ z
z

Agda:

proof : ∀ { X Y Z } → X → Y → (X ∧ Y → Z) → Z

Dependently typed functional programming languages
Curry–Howard correspondence

Hand written proof:

x y
x ∧ y x ∧ y ⇒ z

z

Agda proof:

proof : ∀ { X Y Z } → X → Y → (X ∧ Y → Z) → Z
proof x y f = f (∧ -intro x y)

Dependently typed functional programming languages
Languages as proof assistants

“proof assistants or interactive theorem provers are a
software tools to assist with the development of formal
proofs.” 6

6Wikipedia contributors, Proof assistant. September 28 2015.

https://en.wikipedia.org/wiki/Proof_assistant

Automated reasoning

“Deals with the development of computer programs that
show that some statement (the conjecture) is a logical
consequence of a set of statements (the axioms and
hypotheses).” 7

7Geoff Sutcliffe’s, What is Automated Theorem Proving?.
September 28 2015.

http://www.cs.miami.edu/~tptp/OverviewOfATP.html

Automated reasoning
ATPs

Hand written proof:

x y
x ∧ y x ∧ y ⇒ z

z

TPTP problem:

fof(a_0,axiom,x).
fof(a_1,axiom,y).
fof(a_2,axiom, ((x & y) => z)).
fof(c_0,conjecture, z).

Automated reasoning
ATPs

Proof:

fof(a1, axiom, (x)).
fof(a2, axiom, (y)).
fof(a3, axiom, ((x & y) => z)).
fof(a4, conjecture, (z)).
fof(subgoal_0, plain, (z), inference(strip, [], [a4])).
fof(negate_0_0, plain, (˜ z), inference(negate, [], [subgoal_0])).
fof(normalize_0_0, plain, (˜ z),

inference(canonicalize, [], [negate_0_0])).
fof(normalize_0_1, plain, (˜ x | ˜ y | z),

inference(canonicalize, [], [a3])).
fof(normalize_0_2, plain, (x), inference(canonicalize, [], [a1])).
fof(normalize_0_3, plain, (y), inference(canonicalize, [], [a2])).
fof(normalize_0_4, plain, (z),

inference(simplify, [],
[normalize_0_1, normalize_0_2, normalize_0_3])).

fof(normalize_0_5, plain, ($false),
inference(simplify, [], [normalize_0_0, normalize_0_4])).

cnf(refute_0_0, plain, ($false),
inference(canonicalize, [], [normalize_0_5])).

Conclusion
Proof assistants + ATPs

Proof assistant ATP

translation

reconstruction

Conclusion
Proof assistants + ATPs

Proof:

fof(a1, axiom, (x)).
fof(a2, axiom, (y)).
fof(a3, axiom, ((x & y) => z)).
fof(a4, conjecture, (z)).
fof(subgoal_0, plain, (z), inference(strip, [], [a4])).
fof(negate_0_0, plain, (˜ z), inference(negate, [], [subgoal_0])).
fof(normalize_0_0, plain, (˜ z),

inference(canonicalize, [], [negate_0_0])).
fof(normalize_0_1, plain, (˜ x | ˜ y | z),

inference(canonicalize, [], [a3])).
fof(normalize_0_2, plain, (x), inference(canonicalize, [], [a1])).
fof(normalize_0_3, plain, (y), inference(canonicalize, [], [a2])).
fof(normalize_0_4, plain, (z),

inference(simplify, [],
[normalize_0_1, normalize_0_2, normalize_0_3])).

fof(normalize_0_5, plain, ($false),
inference(simplify, [], [normalize_0_0, normalize_0_4])).

cnf(refute_0_0, plain, ($false),
inference(canonicalize, [], [normalize_0_5])).

Conclusion
Proof assistants + ATPs

Agda equivalent proof:

proof : ∀ {X Y Z} → X → Y → (X ∧ Y → Z) → Z
proof {_}{_}{Z} a1 a2 a3 = conclude0
where
norm03 = canon3 a2
norm02 = canon2 a1
norm01 = canon1 a3
norm04 = simplify0 norm02 norm03 norm01
negate0 : ¬ Z → ⊥
negate0 negatate00 = refute00
where
norm00 = id negatate00
norm05 = simplify1 norm00 norm04
refute00 = canon4 norm05

conclude0 = proofByContradiction negate0

Conclusion
Proof assistants + ATPs

Agda proof:

proof : ∀ { X Y Z } → X → Y → (X ∧ Y → Z) → Z
proof x y f = f (∧ -intro x y)

