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Abstract—In this work we present the methodology and results
coming from the application of the finite element method on an
advection-diffusion problem modelling the air quality of a given
area defined mathematically by a partial differential equation
under certain domains and boundary and initial conditions.
Through the consideration of certain conditions on the problem it
was possible to build a discretization of the reduced and general
equation using the finite difference method as a comparation
base to analyze the effectivity of the main method. Finally, the
concentration curves and the evolution surface representing it
are presented in order to scrutinize in the obtained numerical
results.
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I. INTRODUCTION

The advection-diffusion equation we study is based on
the transportation of a pollutant in the enviroment under
certain conditions [4]. Such kind of problem is usually
treated from the partial differential equation scheme and exact
methods such as separation of variables, change of variables
and transformations are usually used in order to look for
exact solutions in a given domain; however, these methods
cannot be applied when we deal with non-linear equations,
non-homogeneous initial or boundary conditions, irregular
domains or when the resources are not enough. For this
reason, several numerical methods are being used in order to
achieve approximate results of equations whose importance
laids on the problems they represent or model. In this work
we focus on two proccesses, advection and diffusion, which
would allow us to build a theorical model, letting us predict,
for example, how peak concentrations will change in response
to prescribed changes in the domain and in the nature and
source of pollution.

We think that using more accurate methods, such as the
finite elements one, we can build more realistic cases
applying real conditions and therefore get better results
describing a problem that by today has became into a societal
issue. We do not seek to add literature on a classical problem,
but to contribute on the development of new theory aiming to
understand and apply knowledge coming from our daily work.
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The reason why we the finite element method is applied
on this kind of problem is the efficiency of the method on
similar problems [6]. Nowadays its development has increased
widely since its presentation at 1943 by Richard Courant
and it is usually useful to approximate solutions of partial
differential equations governing mechanical systems and it is
also commonly used in the thermodicamical and engineering
area. Overall, in mathematics, the finite element method is
a numerical technique for finding approximate solutions to
boundary value problems for partial differential equations.
It uses subdivision of a whole problem domain into simpler
parts, called finite elements, and variational methods from
the calculus of variations to solve the problem by minimizing
an associated error function. In engineering, as mentioned,
this method has been one of the computational tools most
used and developed over the last thirty years. Such level of
development is translated in a variety of programs (softwares)
of commercial distribution and the ability to simulate relevant
problems in different areas of science and engineering. The
relative ease of access to such commercial programs originated
at the same time an excessive use of them diminishing the
limitations of the method or the understanding of the problem
under simulation.

On the other hand, although commercial programs are
aimed to be multi purpose tools, it is not uncommon to
find problems with particular conditions that clearly exhaust
the software capabilities available [1]. In such cases it is
necessary to modify the commercial codes by incluiding own
algorithms capable of attack the problem at hand. It is clear
then that the current and potential user of the finite element
method requires two fundamental ingredients before tackling,
evaluate or understand the engineering problem. First, a broad
understanding of the problem at hand and second detailed
knowledge of the capabilities and limitations of the method
of solution.

Now, dealing with the advection-diffusion equation it
has been only a few studies concerning on the numerical but
also new theorical approach with the method, i.e, Olshanskii
[8] and Bochev [2] have been able to work from the theorical
aspect of this application but without going further on
the stability criteria. Nevertheless it was shown that such
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application is possible and has the posibility of been improved
by adding computacional perfomances or changing/mixing
the classical problem and its characteristics, such as domain
or initial-boundary conditions. The Galerkin formulation
and finite differences method have been also used to study
the problem described above by Roig [10] and Friedman
[4] respectively, both of which present the finite element
method as a further work. Hence several authors have made
important contributions to the subject over the years, specially
mixing methods with the finite elements one. Ewing [3], for
example, in his work ”A summary of numerical methods
for time-dependent advection-dominated partial differential
equations”, shows a general prospect on how the methods
and techniques have been applied on the advection-diffusion
problem and also presents a light discussion on the incoming
methods, all of them related with the finite elements scheme.

II. PROBLEM STATEMENT

In nature, advection, diffusion and other underlying pro-
cesses deal with the transportation of a given chemical species
in the medium [4]. Now, taking advection and diffusion only
in count and letting c be the concentration of the specie as
a function of position (x1, x2, x3) and time t, the partial
differential equation (1) describing the convection-diffusion
phenomena on a physical system is found over any bounded
domain D whose boundary conditions are defined on the
boundary of D denoted by ∂D:

∂C

∂t
+∇.(uC) = D∇2C,

C(x, 0) = C0(x1, x2, x3)
(1)

where u is the chemical crossflow velocity and D the diffusion
coefficient. Now, if we wanted to present Equation (1) on a
more realistic way, for example, on not rectangular domains
such as steady surfaces then our problem would be defined as
follows.

Let Ω be an open domain in R3 and Γ be a connected
C2 compact surface contained in Ω. Assuming the advection
velocity is everywhere tangential to the surface and having
w : Ω → R3 as a divergence-free velocity field in Ω then the
surface advection-diffusion equation, analogous to Equation
(1), takes the form:

ut + w.5Γ u− ε4Γ u = 0 (2)

where 4Γ denotes the Laplace-Beltrami operator on Γ
defined as the Laplace operator extension on surfaces, i.e.,
the divergent of the gradient.

Equation (2) has been studied by Olshanskii [8] applying
one only numerical method, the finite elements method,
which under the given conditions would provide a stabilized
discretization method for the surface equation, letting apply
numerical experiments and get consistent results with those
expected from other similar approaches like the one proposed
by Bochev [2].

III. FINITE DIFFERENCE METHOD

Generally the finite difference method is considered as
a numerical method for solving differential equations by
approximating them with difference equations, in which finite
differences approximate the derivatives. Therefore, variations
on the method are taken as discretization methods and actually
are the most dominant approach to numerical solutions of
partial differential equations [5].

Considering the expression in (1) the way to solve it
by this method is to approximate all the derivatives by finite
differences. If the domain space is partionated using a mesh
x0, x1, · · · , xJ , and in time using a mesh t0, t1, · · · , tN ,
then the assumption of an uniform partition both in space
and in time will generate the discrete system. The set of
lattice points in the x − t plane is given by x = J · ∆x and
t = n∆n, where J = (j1, j2, j3) and ∆x = (∆x1,∆x2,∆x3)
for ji = 0,±1,±2, · · · , (i = 1, 2, 3), n = 0, 1, 2, 3, · · · .

The approximation to C(J · ∆x, n∆t) will be denoted
by CnJ , noting that ’n’ is not a power. The discretization is as
follows:

∂C

∂t
by

C(J ·∆x, (n+ 1)∆t)− C(J ·∆x, n∆t)

∆t
,

∂C

∂x
by

C(J ·∆x, n∆t)− C(J-1 ·∆x, n∆t)

∆x
,

∂u
∂x

by
u(J ·∆x)− u((J− 1) ·∆x)

∆x
, and

∇2C by

1

(∆x)2
{C((J + 1)∆x, n∆t)− 2C(J ·∆x, n∆t)

+C((J− 1)∆x, n∆t)}

or rather,
Cn+1

J − CnJ
∆t

,
CnJ − CnJ-1

∆x
,
CnJ+1 − 2CnJ + CnJ-1

(∆x)2

and
uJ − uJ−1

∆x
respectively.

Equation (1) can be expanded using indicial notation
as:

∂C

∂t
+ (x̂1

∂

∂x1
+ x̂2

∂

∂x2
+ x̂3

∂

∂x3
) · (uC) = D

3∑
i=1

∂2C

∂xi2

∂C

∂t
+
∂(uC)

∂x1
+
∂(uC)

∂x2
+
∂(uC)

∂x3
= D

3∑
i=1

∂2C

∂xi2

∂C

∂t
+ u · Ci,i + C · ui,i = DC,i

(3)

Without loss of generality we may assume u such that ui,i = 0,
i.e.,

∂ux1

∂x1
+
∂ux2

∂x2
+
∂ux3

∂x3
= 0

so (3) is replaced by
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C(J ·∆x, (n+ 1)∆t)

∆t
− C(J ·∆x, n∆t)

∆t
+

u · C(J ·∆x, n∆t)

∆x
− u · C(J-1 ·∆x, n∆t)

∆x
=

D
{C((J + 1)∆x, n∆t)− 2C(J ·∆x, n∆t)}

(∆x)2
+

D
C((J− 1)∆x, n∆t)

(∆x)2

⇒ Cn+1
J = CnJ +D

∆t[Cn
J+1−2Cn

J +Cn
J-1]

∆x2 − u · ∆t[Cn
J −Cn

J-1]

∆x
(4)

Since a forward difference at time tn, n ≤ N has been
applied we get an explicit method for solving the diffusion-
advection equation. Using the recurrence relation, and knowing
the values at time n, it is possible to obtain the corresponding
values at time n + 1. The initial condition provee the values
for C(J ·∆x, 0) = C0

J .

A. Numerical Stability for the Difference Scheme

In order to analyze the stability of the last procudure,
i.e., check if the finite difference scheme is stable, the von
Neumann criterion, also known as Fourier stability analysis,
allows us to find the conditions, if possible, under which the
errors made at one time step of the calculation do not cause
the errors to increase as the computations are continued.
For our time-dependent problem, stability would guarantee
that the numerical method (4) produces a bounded solution
whenever the solution of the exact differential equation (1)
is bounded. If every solution to the finite difference equation
having the form CnJ = ξneiβββ·J, (βββ ∈ R3, ξ = ξ(β) complex)
has the property | ξ |≤ 1, then the von Neumann criterion
assures stability for the initial value problem.

The importance of determine whether keeping ∆x and
∆t fixed then CnJ remains bounded as n → ∞ uniformly in
the J’s laids on the concerning of the behavior of the solution
to the discretized problem as the time variable becomes very
large. However, it is also important to find out if the CnJ
approximate values C(J · ∆x, n∆t) at the mesh points in
some sense as long as ∆x and ∆t are made sufficiently small,
in such way that the finite difference scheme is convergent.
Fortunately, roughly speaking, the Lax equivalence theorem
says that if the original differential initial value problem is
well-posed, and if one has done a reasonable job builing the
difference scheme, then stability implies convergence.

Let us consider the case when u = (ux1
, ux2

, ux3
) = (U, 0, 0)

so our index vectors become into ∆x = ∆x, J = j and 1 = 1.
The expression in (4) is then reduced to

Cn+1
j =Cnj −

∆t

∆x
(Cnj − Cnj−1)+

D ∆t
(∆x)2 (Cnj+1 − 2Cnj + Cnj−1)

(5)

Applying the von Neumann criterion to the last difference
equation by letting Cnj = ξneiβj and r = ∆t

(∆x)2 we get

ξn+1eiβj = ξneiβj − U.r∆x(ξneiβj − ξneiβ(j−1))

+D.r(ξneiβ(j+1) − 2ξneiβj + ξneiβ(j−1))

Hence, removing the ξneiβj factor,

ξ = 1− U.r∆x(1− e−iβ) +D.r(eiβ − 2 + e−iβ)

= 1− U.r∆x(1− cosβ)− iU.r∆xsinβ + 2D.r(cosβ − 1)

=
(
1− (2D.r + U.r∆x)(1− cosβ)

)
− iU.r∆xsinβ

where the Euler’s identity has been used. Taking the magnitude
of ξ we find

| ξ |2 = 1− 2(2D.r + U.r∆x)(1− cosβ) + (2D.r + U.r∆x)2

(1− cosβ)2 + U2r2(∆x)2sin2β

⇒| ξ |2 −1 = −2(2D.r + U.r∆x)(1− cosβ)

+ 4D2r2(1− cosβ)2 + 4D.U.r2∆x(1− cosβ)2

+ U2r2(∆x)2(1− 2cosβ + 1)

For (1− cosβ) > 0 the condition | ξ |2≤ 1 is equivalent to
−(2k + U∆x) + 2D2r(1− cosβ) + 2D.U.r∆x(1− cosβ) + U2r(∆x)2 ≤ 0

⇒ r(U2(∆x)2 + (2D2 + 2D.U∆x)(1− cosβ)) ≤ 2D + U∆x

⇒ r(U2(∆x)2 + 4D.U∆X + 4D2) = r(U∆x+ 2D)2 ≤ 2D + U∆x

⇒ r(2D + U∆x) ≤ 1

These inequalities show us that if the von Neumann criterion
holds, i.e., if | ξ |≤ 1 for all real β satisfying 1 − cosβ > 0
then | ξ |2≤ 1.

IV. FINITE ELEMENT METHOD

In short the finite element method results into an algorithm
to solve a problem defined through differential equations and
boundary conditions. Such method is built as follows:
• Formulate the problem is his variational form.
• The spacial domain must be divided by a partition into

subdomains, called finite elements. A finite element vec-
tor space is constructed associated with the previous
partition. The approximate numerical solution is obtained
by finite elements a linear combination in that vector
space.

• The projection of the original varioational problem on the
finite element space coming from the partition is obtained.
This gives place to a system with a finite numer of
equations, but in general with a large number of unknown
equations equal to the dimension of the vector space and
in general, the higher the dimension better will be the
numerical approximation obtained.

• The last step is the numerical computation of the solution
of the equation system.

In short, the finite element method is characterized by two
processes, the choosing of a grid for the domain and of the
basis functions.

In practical terms, the finite element method (FEM) is
method for numerical solution of field problems. Cutting
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through a structure into several elements or pieces of the
structure then reconects them at specific ”nodes”, resulting
into a set of simultaneous algebraic equations [K]{u} = {F},
called property, behavior and action respectively, whose nature
depends on the problem one. However, in order to make
the algebraic equations easier for the entire domain several
techniques are used, such as the division of the domain into a
number of small simple elements, the interpolation of a field
quantity by a polynomial over an element or the imposition
of adjacent elements sharing the degrees of freedom at
connecting nodes [1].

Posing the unsteady linear advection-diffusion equation
in (1) under the conditions in Section (III-A) and limiting our
spacial and temporal domains as | x |< 1 in x and t ∈ [0, T ]
in t, we get the following relation:

∂C

∂t
+ u

∂C

∂x
= D

∂2C

∂x2
, −1 < x < 1, t ∈ [0, T ], (6)

where C, u and D are as described before. Imposing Dirichlet
boundary conditions C(−1, t) = C(1, t) = 0 and the initial
condition C(x, 0) = sinπx will let us apply the method and
compare with known solutions for the same problem [7].

Assume C is a solution of the differential equation (6).
Multiplying by an arbitrary test function v and integrating on
[−1, 1] we get:∫ 1

−1

((∂C
∂t

+ u
∂C

∂x

)
v −D.v∂

2C

∂x2

)
dx = 0

Integrating by parts (i.e., using Green’s formula) the last
expression is transformed into:∫ 1

−1

((∂C
∂t

+ u
∂C

∂x

)
v +D

∂C

∂x

∂v

∂x

)
dx = 0 (7)

The global finite elements approximation is sought in terms
of linear Lagrange polynomials making up hat functions such
that the numerical discretization is

Ch(x) =

ε+1∑
i=1

Ci(t)ϕi(x), −1 ≤ x ≤ 1, (8)

where h refers to the finite element grid size. i denotes the
index of the finite element grid nodes and ε the number of
elements covering the spacial domain and therefore N = ε+
1 is the number of grid points. Ci are the time dependent
nodal values. The hat functions are linear interpolants with
the following definition.

ϕi(x) =


x−xi−1

h x ∈ [xi−1, xi]
xi+1−x

h x ∈ [xi, xi+1],
0 x /∈ [xi−1, xi+1]

2 ≤ i ≤ ε.

Replacing the approximate formulas in (7), we obtain:∫ 1

−1

((∂Ch
∂t

+ u
∂Ch
∂x

)
vh +D

∂Ch
∂x

∂vh
∂x

)
dx = 0 (9)

Choosing the test functions as the approximation polynomials,
i.e., vh = ϕi for i = 1, . . . , ε, and using (9) we get:∫ 1

−1

((∂Ch
∂t

+ u
∂Ch
∂x

)
ϕk +D

∂Ch
∂x

∂ϕk
∂x

)
dx = 0

where the subscript k corresponds to the sumation coming
from (8) so that∫ 1

−1

((N−1∑
k=2

ϕi
dCk

dt + udϕi

dx Ck
)
vk +D

N−1∑
k=2

dϕi

dx Ck
dϕk

dx

)
dx = 0

N−1∑
k=2

∫ 1

−1

((
ϕi

dCk

dt + udϕi

dx Ck
)
ϕk +D dϕi

dx Ck
dϕk

dx

)
dx = 0

N−1∑
k=2

∫ 1

−1

(
ϕiϕk

dCk

dt + udϕi

dx ϕkCk +D dϕi

dx
dϕk

dx Ck

)
dx = 0

∑N−1
k=2

(∫ 1

−1
ϕiϕk

dCk

dt dx+ u
∫ 1

−1
dϕi

dx ϕkCkdx+D
∫ 1

−1
dϕi

dx
dϕk

dx Ckdx

)
= 0∑N−1

k=2

(∫ 1

−1
ϕiϕk

dCk

dt dx+
(
u
∫ 1

−1
dϕi

dx ϕkdx+D
∫ 1

−1
dϕi

dx
dϕk

dx dx
)
Ck

)
= 0

N−1∑
k=2

(
Mi,k

dCk

dt +
(
uRi,k +DKi,k

)
Ck

)
= 0

where the mass matrix [M ], weak derivative matrix [R] and
stiffness matrix [K] corresponds respectively to

Mi,k =

∫ 1

−1

ϕiϕkdx, 2 ≤ i ≤ N − 1,

Ri,k =

∫ 1

−1

dϕi

dx ϕkdx, 2 ≤ i ≤ N − 1,

Ki,k =

∫ 1

−1

dϕi

dx
dϕk

dx dx, 2 ≤ i, k ≤ N − 1.

Note that a linear system of algebraic equations of order N−2
has been generated as the end points are given boundary
values, i.e., k = 1 and k = N correspond to C(−1, t) and to
C(1, t) correspondingly.

For a given node i its discrete equation is then given
by

h
6
dCi−1

dt + 2h
3
dCi

dt + h
6
dCi+1

dt

+uCi+1−Ci−1

2 − D
h (Ci−1 − 2Ci + Ci+1) = 0.

Using an implicit Crank-Nicolson time scheme for the
viscous part corresponding to those terms related with [K]
and a second-order Adams-Bashforth explicit integration for
the advection term on the set of ordinary differential equations
[M ]dC(t)

dt + ([K] + [R])C(t) = 0, where C is the vector
collecting all the problem unknowns, then the full discrete
equations read with ∆t depending on the Courant-Friedrich-
Levy condition for the explicit part as follows:(

[M ]+∆t
2 [K]

)
Cn+1 =

(
[M ]−∆t

2 [K]

)
Cn+∆t

2 [R]
(
3Cn−Cn−1

)
(10)
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V. RESULTS

A. Diffusion-Advection Equation for P2 Problem
Let us consider the case when u = (U, V, 0) =

(− sin θ, cos θ, 0), therefore ∆x = (∆x1,∆x2) = (∆x,∆y)
and J = (j1, j2) = (j, l). For the initial condition and
conditions given below we apply the differential scheme (4)
for | x |≤ 100 and | y |≤ 100 and different points of time.

c0(x, y) =

{
50(1 + cos πR4 ) , if R < 4
0 , if R > 4

where

 θ = arctan y
x

R2 = (x− x0)2 + (y − y0)2

(x0, y0) = (5,−10)

Note that u is such that satisfy the condition ∇ · u = 0,
indeed, since

(U, V ) =

(
− sin θ, cos θ) =

(
− y√

(x2 + y2)
,

x√
x2 + y2

)
,

thus we obtain

∇ · u =
∂u
∂x

+
∂u
∂y

= −y ∂
∂x

[
1√
x2+y2

]
+ x

∂

∂y

[
1√
x2+y2

]
=

yx

(x2 + y2)
3
2

− yx

(x2 + y2)
3
2

= 0.

Letting k = 1, ∆x = ∆y = 1, ∆t = 2.5 ∗ 10−1 and 100
nodes for each axis we obtain the concentration surfaces for
t = 1.25s, 6.25s, 15s, 30s respectively using the routines in
[9].

B. Diffusion-Advection Equation for P1 Problem
For purposes of testing the finite element discretization pre-

sented in the last section we stablish the equation parameters
D and u as 1 and 1

10π respectively under the boundary and
initial conditions as mentioned before. Corresponding to the
method ∆t is set as 1

100 with ε = 1000 elements. Applying
the scheme (10) we obtain the curves in Figs. (V-B) for equally
spaced domain with ∆x = 0.2.

Fig. 1. Concentration surface evolution for 1.25 secs.

Fig. 2. Concentration surface evolution for 6.25 secs.

Fig. 3. Concentration surface evolution for 15 and 30 secs.

Fig. 4. Concentration percentage evolution curve for different parameters.



FINITE DIFFERENCE AND ELEMENTS METHOD APPLICATION, NOVEMBER 2015 6

Fig. 5. Concentration percentage evolution curve for different parameters.

Fig. 6. Concentration percentage curves for different times with finite element
method.

VI. CONCLUDING REMARKS

The finite elements method was applied on the one-
dimensional linear advection-diffusion equation for Dirichlet
boundary conditions and a sinusoidal initial condition after had
realised a theorical analysis using the finite difference method,
allowing us to obtain a preliminary insight into the behavior of
the solution for (6). Although the presence of different param-
eters in the building of the solution might have a significant
effect on its stability, the convergence of both methods under
different sets of parameters as exposed in Figure(V-B) and
Figure(V-B), guarantees a dependence only on the spatial and
temporal discretization. The von Neumann stability criterion
provees a tool to ensure degrees of stability; however, this same

criterion cannot be applied for the finite element method since
only when under certain conditions concerning completeness
and the good behavior of the approximate solution are satisfied
then convergence is insured. The accomplished results could
be used to analyze the polutant concentration distribution for a
certain domain, as long as the real conditions can be adequate
to the theorical ones.
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