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Obed Ŕıos-Ruiz
oriosru@eafit.edu.co

Advisor: Jairo Alberto Villegas-Gutiérrez
javille@eafit.edu.co

EAFIT University

November 23, 2015



Introduction
Main equations describing the phenomena

Time dependent equation on steady surfaces

ct + w · ∇Γc−D4Γ c = 0 on Γ (1)

I c ⇒ chemical species concentration.

I u ⇒ the Darcy or chemical crossflow velocity.

I D ⇒ the diffusion coefficient.

I Ω ⇒ the physical domain seen as an open domain in R3

and therefore Γ a connected C2 compact surface contained
in Ω.

I w : Ω→ R3 ⇒ a divergence-free velocity field in Ω.

I 4Γ ⇒ Laplace-Beltrami operator on Γ.



Introduction
Main equations describing the phenomena

Time dependent equation in space

∂C

∂t
+∇ · (uC) = D∇2C (2)

In this case u can be considered as the wind velocity and it is
usually taken as constant in any horizontal direction
~u = (U, V, 0). So it is possible to build a solution from the finite
difference method as well as a study of the stability using the
von Neumann stability criterion. Example
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Criteria

Von Neumann criterion
The difference method for an initial value problem (for a
differential equation with constant coefficients) with a bounded
solution is stable if every solution to the finite difference
equation having the form cnj = ξneiβj , (β real, ξ = ξ(β)
complex) has the property | ξ |≤ 1. Example
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Criteria

Finite elements method first criterion idea
In the study of the elastic theory where three kinds of
magnitudes, stresses, strains and displacements determine the
solution by using the finite elements method, if certain
conditions concerning completeness and the good behavior of
the approximate solution are satisfied then convergence is
insured. Continuation



Developments
Example proposition

Solve the advection diffusion problem [1] governed by (2)
subject to:

Problem conditions

~u = (U, V, 0) = (− sin θ, cos θ, 0)

c0(x, y) =

{
50(1 + cos πR4 ) , if R < 4
0 , if R > 4

where


θ = arctan y

x
R2 = (x− x0)2 + (y − y0)2

(x0, y0) = (5,−10)



Developments
Example results

Figure 1: Concentration percentage evolution for 5 and 25 segs
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Example results

Figure 2: Concentration percentage evolution for 60 and 150 segs
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Example results

Figure 3: Concentration percentage curve until 120 segs

Continuation



Developments
Example results

Taking ~u as ~u = (U, 0, 0) the Equation(2) takes the following
form.

Cn+1
j = Cnj − U

∆t

∆x
(Cnj − Cnj−1) +D ∆t

(∆x)2
(Cnj+1 − 2Cnj + Cnj−1)

(3)

Letting Cnj = ξneiβj and r = ∆t
(∆x)2

the von Neumann criterion

is applied.

⇒ ξn+1eiβj = ξneiβj − U.r∆x(ξneiβj − ξneiβ(j−1))

+D.r(ξneiβ(j+1) − 2ξneiβj + ξneiβ(j−1))

⇒ ξ = 1− U.r∆x(1− e−iβ) +D.r(eiβ − 2 + e−iβ)

= 1− U.r∆x(1− cosβ)− iU.r∆xsinβ + 2D.r(cosβ − 1)

=
(
1− (2D.r + U.r∆x)(1− cosβ)

)
− iU.r∆xsinβ

(4)
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⇒| ξ |2 = 1− 2(2D.r + U.r∆x)(1− cosβ) + (2D.r + U.r∆x)2

(1− cosβ)2 + U2r2(∆x)2sin2β

⇒| ξ |2 −1 = −2(2D.r + U.r∆x)(1− cosβ)

+ 4D2r2(1− cosβ)2 + 4D.U.r2∆x(1− cosβ)2

+ U2r2(∆x)2(1− 2cosβ + 1)

(5)

For (1− cosβ) > 0 the condition | ξ |2≤ 1 is equivalent to
−(2k + U∆x) + 2D2r(1− cosβ) + 2D.U.r∆x(1− cosβ) + U2r(∆x)2 ≤ 0

⇒ r(U2(∆x)2 + (2D2 + 2D.U∆x)(1− cosβ)) ≤ 2D + U∆x

⇒ r(U2(∆x)2 + 4D.U∆X + 4D2) = r(U∆x+ 2D)2 ≤ 2D + U∆x

⇒ r(2D + U∆x) ≤ 1
Continuation
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Example results

As long as r(2D + U∆x) ≤ 1 = ∆t
∆x2

(2D + U∆x) ≤ 1 is hold
then (3) and therefore (2) are convergent.

Figure 4: Solution to particular problem with ∆x = 1
10 and ∆t equal

to 1
211 (stable), 1

210 (semi-stable) and 1
209 (unstable) respectively [1].
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Finite Element Method

Consider the reduced equation from (2):

∂C

∂t
+ u

∂C

∂x
= D

∂2C

∂x2
, −1 < x < 1, t ∈ [0, T ], (6)

The global finite elements approximation is sought in terms of
linear Lagrange polynomials making up hat functions such that
the numerical discretization is

Ch(x) =

ε+1∑
i=1

Ci(t)ϕi(x), −1 ≤ x ≤ 1, (7)

where h refers to the finite element grid size. i denotes the
index of the finite element grid nodes and ε the number of
elements covering the spacial domain and therefore N = ε+ 1 is
the number of grid points. Ci are the time dependent nodal
values [3].
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Finite Element Method

Replacing the finite elements into the equation below, where v
is a test function:∫ 1

−1

((∂C
∂t

+ u
∂C

∂x

)
v +D

∂C

∂x

∂v

∂x

)
dx = 0 (8)

we get the following linear system of algebraic equations of
order N − 2, where the end points are given boundary values,
i.e., k = 1 and k = N correspond to C(−1, t) and to C(1, t)
correspondingly.
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Finite Element Method

N−1∑
k=2

(
Mi,k

dCk
dt +

(
uRi,k +DKi,k

)
Ck

)
= 0

where the mass matrix [M ], weak derivative matrix [R] and
stiffness matrix [K] corresponds respectively to

Mi,k =

∫ 1

−1
ϕiϕkdx, 2 ≤ i ≤ N − 1,

Ri,k =

∫ 1

−1

dϕi

dx ϕkdx, 2 ≤ i ≤ N − 1,

Ki,k =

∫ 1

−1

dϕi

dx
dϕk
dx dx, 2 ≤ i, k ≤ N − 1.
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Finite Element Method

Using an implicit Crank-Nicolson and a second-order
Adams-Bashforth explicit integration on the set of ordinary
differential equations [M ]dC(t)

dt + ([K] + [R])C(t) = 0, where C is
the vector collecting all the problem unknowns, then the full
discrete equations read as:(

[M ]+ ∆t
2 [K]

)
Cn+1 =

(
[M ]− ∆t

2 [K]

)
Cn+ ∆t

2 [R]
(
3Cn−Cn−1

)
(9)
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Finite Element Method

Let D and u as 1 and 1
10π respectively. Corresponding to the

method ∆t is set as 1
100 with ε = 1000 elements. Applying the

scheme (9) we get the following curves for equally spaced
domain with ∆x = 0.2.

Figure 5: Concentration percentage curves for different times using
finite element method.



Current work
Towards a general formulation

Given the following variation [2] from (1), bilinear form and
the functional respectively:

w · ∇Γu+ c(x)u = f + ε∆Γu on Γ

a(u, v) := ε

∫
Γ
∇Γu · ∇Γv ds+∫

Γ
(w · ∇Γu)v ds+

∫
Γ
uv ds

f(v) :=

∫
Γ
fv ds

where f ∈ L2Γ, c(x) ≥ 0 and ∆Γ and ∇Γ defined as before, find
u ∈ V such that



Actual work

a(u, v) = f(v) , for all v ∈ V

with

V =


{
v ∈ H1(Γ) |

∫
Γ v ds = 0

}
, if c = 0

H1(Γ) , if c > 0

where H1(Γ) denotes the Sobolev spaces with p = 2 and owing
to the Lax-Milgramm lemma, there exist a unique solution of
this last equation.
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