Real Options Valuation for Mining Projects Using the Finite Difference Method

J. Mauricio Cuscagua-Lopez Fredy H. Marín-Sanchez

Research Practise 1: Final Presentation Mathematical Engineering

November 2015

UNIVERSIDAD EAFIT

Some Definitions

- Option: contract which gives the buyer - the owner or holder - the right, but not the obligation, to buy or sell an underlying asset or instrument at a specified strike price on or before a specified date.
- Real Option: contract which gives the buyer the right but not the obligation - to undertake certain business initiatives

Why to use Options?

- Because of its versatility: They allow for positive movements although the market does not tend to rise.
- To ensure investment: Minimize the risk and losses (not eliminate).

Option Valuation

Black, Scholes and Merton assumed that the price of the underlying can be modeled as a Geometric Brownian motion, then, the price S_{t} satisfies the stochastic differential equation (SDE) bellow:

$$
\begin{equation*}
d S_{t}=\mu S_{t} d t+\sigma S_{t} d B_{t} \tag{1}
\end{equation*}
$$

where B_{t} is a unidimensional standard Brownian motion (USBM).

Option Valuation

- The price of the underlying is a Geometric Brownian motion.
- No transaction costs.
- The assets are perfectly divisible.
- The underlying pays no dividends during the life of the option.
- No arbitrage opportunities.
- The negotiation of assets is continuing.
- Free interest rate risk r is constant for all maturities.

Option Valuation

Let f be the price of a call option of European type. Using the assumptions described before and the Ito's lemma [Mao, 2007] it is shown that $f(t, S)$ must satisfies the following partial differential equation (PDE):

$$
\begin{equation*}
\frac{\partial f}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} f}{\partial S^{2}}+r S \frac{\partial f}{\partial S}=r f \tag{2}
\end{equation*}
$$

where f is the price of the Option, S is the price of the underlying, σ is the volatility of the underlying related to the commodity and r is the free interest rate risk.

Boundary Conditions

For a call option of European type, the boundary conditions are:

- For $t=\tau$, then $f=\max (S-K, 0)$
- For $S=S_{\max }$, then $f=\max \left(S_{\max }-K, 0\right)$
- For $S=0$, then $f=0$

Where $T=\tau-t$ is the maturity time and K is the exercise price of the option.

PDE for Mining Projects Valuation

Considering the arguments reported in [Haque et al., 2014], Haque, Aminul and Topal assumed that the price of mining project can be modeled as a USBM, then, the price P_{t} satisfies the stochastic differential equation:

$$
\begin{equation*}
\frac{d P}{P}=(r-\delta) d t+\sigma d_{W} \tag{3}
\end{equation*}
$$

where P is the spot unit price of the underlying, r is the risk free rate of interest, δ is the mean convenience yield on holding one unit of gold, σ is the volatility of returns of P and d_{W} is the wiener increment Standard.

PDE for Mining Projects Valuation

This project leads to a cash flow $q(P-C)(1-G) d t-$ $\delta(\partial V / \partial P) P d t$, where C is the total cost per unit of gold and G is the total tax. Therefore, the total return on the portfolio is:

$$
\begin{equation*}
d V-\frac{\partial V}{\partial P} d P+a(P-C)(1-G) d t-\delta \frac{\partial V}{\partial P} P d t \tag{4}
\end{equation*}
$$

PDE for Mining Projects Valuation

Applying the Ito's Lemma we obtain:

$$
\begin{equation*}
\frac{1}{2} P^{2} \sigma^{2} \frac{\partial^{2} V}{\partial P^{2}}-q \frac{\partial V}{\partial Q}+(r-\delta) P \frac{\partial V}{\partial P}-\left(r+\lambda_{c}\right) V+q(P-C)(1-G)=0 \tag{5}
\end{equation*}
$$

where P is the price of gold, Q is the total reserve of gold, q is the average gold production rate, C is the total cost, G is the Corporate taxes, δ is the convenience yield for holding gold, λ_{c} is the country risk, σ is the gold price volatility and r is the Risk free rate.

Boundary Conditions

The boundary conditions for this PDE are:

- For $Q=0$, then $V=0$, i.e. for a reserve of 0 , the value of the mine is 0 .
- For $P=0$, then $V=0$, i.e. for a gold price equal to 0 , the value of the mine is 0 .
- For $P=P_{\max }$, then $V=P_{\max } Q$, i.e. for a maximum gold price, the value of the mine is that price times the reserve in the mine.

Dynamic

Figure 1: Dynamic of the Finite Difference method

Approximations

The Finite Difference method sets the following expressions to sample the derivatives [Hull, 2006].

$$
\begin{align*}
\frac{\partial f}{\partial t} & \approx \frac{f_{i+1, j}-f_{i, j}}{\Delta t} \\
\frac{\partial f}{\partial S} & \approx \frac{f_{i+1, j+1}-f_{i+1, j-1}}{2 \Delta S} \tag{6}\\
\frac{\partial^{2} f}{\partial S^{2}} & \approx \frac{f_{i+1, j+1}+f_{i+1, j-1}-2 f_{i+1, j}}{\Delta S^{2}}
\end{align*}
$$

A Black-Scholes Model Variation

(5) has the same structure than the Black-Scholes model when we set $G=1, \delta=\lambda_{c}=0$ and $q=-1$. This is mathematically correct but without any sense (financially talking). Assuming the value of the parameters described above, we get in (5):

$$
\begin{equation*}
\frac{1}{2} P^{2} \sigma^{2} \frac{\partial^{2} V}{\partial P^{2}}+\frac{\partial V}{\partial Q}+r P \frac{\partial V}{\partial P}=r V \tag{7}
\end{equation*}
$$

Variable Changes

Let us take the following change of variable

$$
\begin{align*}
H & =\mathrm{e}^{r(\tau-t)} f \\
X & =\mathrm{e}^{r(\tau-t)} S \tag{8}
\end{align*}
$$

where $H: H(t, X)$ and $\tau-t$ is the maturity time.

Derivatives Equivalences

By deriving and applying the chain rule to the expressions in (8) we obtain:

$$
\begin{gather*}
\frac{\partial f}{\partial t}=e^{-r(\tau-t)}\left(-r X \frac{\partial H}{\partial X}+\frac{\partial H}{\partial t}\right)+r H e^{-r(\tau-t)} \tag{9}\\
\frac{\partial f}{\partial s}=\frac{\partial H}{\partial X} \tag{10}\\
\frac{\partial^{2} f}{\partial s^{2}}=e^{r(\tau-t)} \frac{\partial^{2} H}{\partial s^{2}} \tag{11}
\end{gather*}
$$

Transformed Black-Scholes Model

Using the results in (9), (10) and (11) in (2) and organizing the terms we have:

$$
\begin{equation*}
\frac{\partial H}{\partial t}+\frac{1}{2} \sigma^{2} X^{2} \frac{\partial^{2} H}{\partial X^{2}}=0 \tag{12}
\end{equation*}
$$

The equivalent boundary conditions for this alternative PDE with the original one are:

- For $t=\tau$, then $f=\mathrm{e}^{r(\tau-t)} \max (S-K, 0)$.
- For $S=S_{\text {max }}$, then $f=\mathrm{e}^{r(\tau-t)} \max \left(S_{\max }-K, 0\right)$.
- For $S=0$, then $f=0$.

Transformed PDE for a Mining Project

Using the equivalences between the partial derivatives, we take S and t as P and Q respectively. The alternative PDE which corresponds to the transformation of (5):

$$
\begin{equation*}
\frac{1}{2} \gamma X^{2} \frac{\partial^{2} H}{\partial X^{2}}+\frac{\partial H}{\partial Q}=\left(\rho_{2}-\rho_{1}\right) H+g\left(X-C e^{\rho(\Phi-Q)}\right) \tag{13}
\end{equation*}
$$

where Φ is the maximum reserve of gold for the mine, $\gamma=-\frac{\sigma^{2}}{q}$, $\rho_{1}=-\frac{r-\delta}{q}, \rho_{2}=-\frac{r-\lambda_{c}}{q}$ and $g=1-G$.

Parameters for Simulation

Parameter	Value	Parameter	Value
σ	0.22271	G	0.3
r	0.06	q	89155
λ_{C}	0.03	Q	285620
δ	0.03	C	141.71

Table 1: Set of parameters for the simulation. Taken from [Haque et al., 2014]

Numerical Scheme

Using the approximations in (9-11), we obtain the numerical schema corresponding to (13):

$$
\begin{equation*}
H_{i, j}=a_{j} H_{i+1, j+1}+b_{j} H_{i+1, j}+c_{j} H_{i+1, j-1}+d_{j} \tag{14}
\end{equation*}
$$

where, $Q_{i}=i \Delta Q-Q$ for $i=1,2, \ldots, I, P_{j}=j \Delta P$ for $j=1,2, \ldots, J$.

Coheficients

The weights for (14) are:

$$
\begin{align*}
a_{j} & =\frac{1}{2} \frac{\Delta Q \gamma j^{2}}{1+\rho_{2}-\rho_{1}} \\
b_{j} & =\frac{1}{2} \frac{1-\Delta Q \gamma j^{2}}{1+\rho_{2}-\rho_{1}} \tag{15}\\
c_{j} & =\frac{1}{2} \frac{\Delta Q \gamma j^{2}}{1+\rho_{2}-\rho_{1}} \\
d_{j} & =\frac{\Delta Q\left(j \Delta X-C e^{\rho_{1}(\Phi-Q)}\right)}{1+\rho_{2}-\rho_{1}}
\end{align*}
$$

Relation Between ΔQ and ΔX

As we seek for the positivity of the weights, b_{j} gives us the information about the relation between the deltas.

$$
\Delta Q=\frac{Q}{\left\lceil\frac{\Delta^{2}}{X_{\text {max }} \gamma}\right\rceil}
$$

Convergence

Figure 2: Convergence curve for increasing points of discretization

Computation Time

Figure 3: Comparing computation time between the transformed and original PDE for increasing points of discretization

Analysis of the Risk Free Interest Rate r

a.

Figure 4: Mail of the mine value for different values of the free risk interest rate, $a . r=0.1, b . r=0.06$.

Analysis of the Risk Free Interest Rate r

r	Maximum value of the mining project
0.1	$\$ 1,072,265,450.9341$
0.06	$\$ 943,299,247.8578$
0.01	$\$ 803,680,548.3382$

Table 2: Maximum value of the mining project for different values of the free risk interest rate.

Analysis of the Volatility σ

Figure 5: Mail of the mine value for different values of the volatility of the underlying, $a . \sigma=0.01, b . \sigma=0.22271$.

Analysis of the Volatility σ

σ	Maximum value of the mining project
0.01	$\$ 563,087,328.7043$
0.22271	$\$ 752,231,420.0460$
0.5	$\$ 807,581,453.0986$

Table 3: Maximum value of the mining project for different values for the volatility of the underlying.

Conclusions

- The transformation can be implemented with derivatives models of Black-Scholes model that are used for calculating several financial assets.
- It was tested the natural direct relationship between a financial asset and the volatility of the underlying and the free risk interest rate.
- The transformation makes the computation time of the calculation faster. That is of interest to a brokerage firm.

Further Work

- Test the proposed numerical scheme in several different variations of the Black-Scholes model for the calculation of different kind of financial assets.
- Verify the monotonicity, positivity, consistency, stability and convergence of the numerical scheme.
- Implement historical data to compare specific results obtained by different calculation methods and the results given by our proposed numerical scheme.

References I

围 Haque, M. A., Topal, E., and Lilford, E. (2014).
A numerical study for a mining project using real options valuation under commodity price uncertainty.
Resources Policy, 39:115-123.
圊 Hull, J. C. (2006).
Options, futures, and other derivatives.

Pearson Education India.

Mao, X. (2007).
Stochastic differential equations and applications.
Elsevier.

