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Some Definitions

e Option: contract which gives the buyer - the owner or
holder - the right, but not the obligation, to buy or sell an
underlying asset or instrument at a specified strike price on
or before a specified date.

e Real Option: contract which gives the buyer the right —
but not the obligation — to undertake certain business
initiatives
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Why to use Options?

e Because of its versatility: They allow for positive
movements although the market does not tend to rise.

e To ensure investment: Minimize the risk and losses (not
eliminate).
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Option Valuation

Black, Scholes and Merton assumed that the price of the
underlying can be modeled as a Geometric Brownian motion,

then, the price S; satisfies the stochastic differential equation
(SDE) bellow:

dSt = ,LLStdt + O'StdBt (1)

where B; is a unidimensional standard Brownian motion

(USBM).
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Option Valuation

@ The price of the underlying is a Geometric Brownian
motion.

@ No transaction costs.
@ The assets are perfectly divisible.

@ The underlying pays no dividends during the life of the
option.

e No arbitrage opportunities.
@ The negotiation of assets is continuing.

@ Free interest rate risk r is constant for all maturities.
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Option Valuation

Let f be the price of a call option of European type. Using the
assumptions described before and the Ito’s lemma [Mao, 2007]
it is shown that f(t,S) must satisfies the following partial
differential equation (PDE):

(9f 1 2g 0% f of _

o Ta7 g T =Y (2)
where f is the price of the Option, S is the price of the
underlying, o is the volatility of the underlying related to the
commodity and r is the free interest rate risk.
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Boundary Conditions

For a call option of European type, the boundary conditions are:
e For t = 7, then f = max(S — K,0)
e For S = Sp4z, then f = max(Smar — K, 0)
@ For § =0, then f =0

Where T' = 7 — t is the maturity time and K is the exercise
price of the option.
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PDE for Mining Projects Valuation

Considering the arguments reported in [Haque et al., 2014],
Haque, Aminul and Topal assumed that the price of mining
project can be modeled as a USBM, then, the price P; satisfies
the stochastic differential equation:

d?P = (r —9)dt + odw (3)

where P is the spot unit price of the underlying, r is the risk
free rate of interest, 0 is the mean convenience yield on holding
one unit of gold, o is the volatility of returns of P and dyy is the
wiener increment Standard.
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PDE for Mining Projects Valuation

This project leads to a cash flow ¢(P — C)(1 — G)dt—
d(0V/OP)Pdt, where C is the total cost per unit of gold and G
is the total tax. Therefore, the total return on the portfolio is:

oV oV
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PDE for Mining Projects Valuation

Applying the Ito’s Lemma we obtain:

2

l]3202
2

where P is the price of gold, () is the total reserve of gold, ¢ is the
average gold production rate, C' is the total cost, G is the Corporate
taxes, 0 is the convenience yield for holding gold, A. is the country
risk, o is the gold price volatility and r is the Risk free rate.
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Boundary Conditions

The boundary conditions for this PDE are:

e For ) =0, then V =0, i.e. for a reserve of 0, the value of
the mine is 0.

@ For P =0, then V =0, i.e. for a gold price equal to 0, the
value of the mine is O.

e For P = P4z, then V = P,,,,,.Q, i.e. for a maximum gold
price, the value of the mine is that price times the reserve
in the mine.
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Dynamic
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Figure 1: Dynamic of the Finite Difference method
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Approximations

The Finite Difference method sets the following expressions to
sample the derivatives [Hull, 2006].
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A Black-Scholes Model Variation

(5) has the same structure than the Black-Scholes model when
we set G = 1,0 = A\ =0 and ¢ = —1. This is mathematically
correct but without any sense (financially talking). Assuming
the value of the parameters described above, we get in (5):
1 0°V OV oV
(7)
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Variable Changes

Let us take the following change of variable

H = er(T—t)f
X =g

where H : H(t, X) and 7 — t is the maturity time.
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Derivatives Equivalences

By deriving and applying the chain rule to the expressions in
(8) we obtain:

% _ —r(r—t)__ OH OH —r(T—t)

5 =€ ( fr'XaX—l—at)—i—THe (9)
of 0H
Js 0X (10)

ds2 0s? (11)
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Transformed Black-Scholes Model

Using the results in (9), (10) and (11) in (2) and organizing the
terms we have:

OH 1 , ,0°H
54—50 X —8X2 =0 (12)

The equivalent boundary conditions for this alternative PDE
with the original one are:

o For t =7, then f = " " Ymaz(S — K,0).
e For S = S0z, then f = eT(T_t)maa:(Smax — K,0).
e For § =0, then f =0.
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Transformed PDE for a Mining Project

Using the equivalences between the partial derivatives, we take
S and t as P and @ respectively. The alternative PDE which
corresponds to the transformation of (5):

1 X262H OH

5’}/ 8X2 + aQ - (:02 _ pl)H+g(X T Cep(@—Q)) (13)

where ® is the maximum reserve of gold for the mine, v = —%-,

01:—?”02:—% and g =1—-G.
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Parameter | Value | Parameter | Value
o 0.22271 G 0.3
r 0.06 q 89155
AC 0.03 Q 285620
) 0.03 C 141.71

Table 1: Set of parameters for the simulation. Taken from

[Haque et al., 2014]
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Numerical Scheme

Using the approximations in (9 - 11), we obtain the numerical
schema corresponding to (13):

Hij=a;Hit1j11+bjHiv1j+cjHip1j-1+d;  (14)

where, Q; = 1AQ —Q for i =1,2,...,1, P; = jAP for
j=1,2,...,J.
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Coheficients

The weights for (14) are:

1 AQyj?
CLj = —
214 p2 —p1
b 11— AQvj?
7214 p2—
1 AQyj?

ci = —

7214 p2—p1

 AQ(JAX — Cler1(P=Q))
L+ p2—p1

d;

(15)
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Relation Between AQ and AX

As we seek for the positivity of the weights, b; gives us the
information about the relation between the deltas.

AQ = A2 (16)
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Convergence

Figure 2:
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Computation Time
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Figure 3: Comparing computation time between the transformed and
original PDE for increasing points of discretization
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Analysis of the Risk Free Interest Rate r
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Figure 4: Mail of the mine value for different values of the free risk
interest rate, a. »r = 0.1, b. » = 0.06.
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Analysis of the Risk Free Interest Rate r

r Maximum value of the mining project
0.1 $ 1,072,265,450.9341
0.06 $ 943,299,247.8578
0.01 $ 803,680,548.3382

Table 2: Maximum value of the mining project for different values of
the free risk interest rate.
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Analysis of the Volatility o
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Figure 5: Mail of the mine value for different values of the volatility of
the underlying, a. 0 = 0.01, b. o = 0.22271.
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Analysis of the Volatility o

o Maximum value of the mining project
0.01 $ 563,087,328.7043
0.22271 $ 752,231,420.0460
0.5 $ 807,581,453.0986

Table 3: Maximum value of the mining project for different values for
the volatility of the underlying.
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Conclusions

@ The transformation can be implemented with derivatives
models of Black-Scholes model that are used for calculating
several financial assets.

e It was tested the natural direct relationship between a
financial asset and the volatility of the underlying and the
free risk interest rate.

@ The transformation makes the computation time of the
calculation faster. That is of interest to a brokerage firm.
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Further Work

@ Test the proposed numerical scheme in several different
variations of the Black-Scholes model for the calculation of
different kind of financial assets.

e Verify the monotonicity, positivity, consistency, stability
and convergence of the numerical scheme.

e Implement historical data to compare specific results
obtained by different calculation methods and the results
given by our proposed numerical scheme.



References

References 1

5] Haque, M. A., Topal, E., and Lilford, E. (2014).

A numerical study for a mining project using real options
valuation under commodity price uncertainty.

Resources Policy, 39:115-123.

W Hull, J. C. (2006).
Options, futures, and other derivatives.

Pearson Education India.

& Mao, X. (2007).
Stochastic differential equations and applications.

Elsevier.



	Intro
	Problem
	Mining Projects
	Finite Differences
	Transformations
	Results
	Conclusions
	References

