Proof Reconstruction

Alejandro Gémez Londono

Research Proposal

Supervisor: Andrés Sicard-Ramirez

EAFIT University

Medellin



Proof Reconstruction

1 Statement of the Problem

Automated theorem provers (ATP) and proof assistants has been around for
decades [3LB]. Despite the obvious differences between the two, both approaches
share a fundamental goal which is to aid humans with complex proofs in an
automatic or interactive manner, is maybe due to this relationship that in recent
years various tools have been developed using a mixture of both systems. Such
tools, some times referred to as hammers [I] allow the users to write proofs in a
interactive manner from within a proof assistant, but with the option of sending

parts of a proof to an ATP.

Hammers by themselves aren’t ATPs nor poof assistants, they act more like
a plugin that sits on top of the proof assistant and allows the communication
with various ATPs for proof automation, hammer-like tools typically consists

on three mayor components [I]:

1. Premise selector: it gathers relevant theorems from the available libraries

that can help with the current proof.

2. Translation module: takes the premises and the goal and translates them
into the ATPs input syntax (usually TPTP [9]) this translation in most
cases involves the mapping between the proof assistants logic and the
ATPs logic.

3. Proof reconstruction module: processes the proof returned by the ATP

reconstructing it in the proof assistants syntax/logic.

Agda [7] as a proof assistant lacks of a hammer-like tool, but programs like
Apia [8] which allows to prove first-order theorems from within Agda using ATPs
are closing this gap. Unfortunately Apia only works as a translation module and
as a front-end for the ATPs. Some further development has to be done to achieve
an Agda-hammer tool and one of the missing pieces in this enterprise is a proof
reconstruction module, this would allow proofs to be verified from within Agda
and jointly with tool like Apia it could provide a fully functional hammer for
Agda.



2 Objectives

2.1 General Objective

Translate the output from an ATP-generated proof into idiomatic Agda code.

2.2 Specific Objectives

Select a suitable ATP (which supports TSTP output format) to translate

from.

Parse the output proof of the selected ATP.

Build an Agda library that implements the logical kernel of the ATP.

Reconstruct the proof in Agda using the aforementioned library.

3 Literature Review

As stated before, the development of ATPs and proof assistants dates from
decades ago, but in comparison, the mixture of this two approaches (as ham-
mers) is relatively new, nonetheless some exponents of this trend have been
developed in the later years. Perhaps the best precedent in this category is
Sledgehammer [2] a tool that sits on top of the Isabelle proof assistant [6] and
allows the translation/reconstruction of proofs to/from multiple ATPs. An-
other similar example for the Agda proof assistant is a work by Simon Foster
and Georg Struth that proposes the integration of Agda with Waldmeister [4]
a theorem prover for equational logic. The usefulness and convenience of the
hammers can truly improve the way proof assistants work, taking most of the
boilerplate and tediousness of proofs out of the way, an thus allowing to get

more work done faster.

Currently Agda unlike Isabelle lacks of a true hammer, but this is an issue that
is being addressed by the aforementioned work by Foster and Struth, and by
some interesting developments like the Apia tool [§], which allows to prove first-
order theorems from within Agda translating the formulae to TSTP and then

sending it to multiple ATPs.



4 Scope

The Scope of this project is to implement a proof reconstruction module for
the Agda proof assistant, along with documentation, tests and packaging, for a

proper distribution and usability, no further work is stated in this project.

5 Justification

This project aims to improve the current state of automatic theorem proving
in the Agda proof assistant, to do so we will implement a proof reconstruction
module this will allow tools like Apia [8] (and any translation module in general)
to “close the loop” and act as a true hammer for Agda. This would be a big

step forward for the Agda community and thus significantly relevant.

6 Methodology

This project will be developed in parallel between the authors, in order to
expand the scope to a multiple ATP and SMT systems. The proposed schedule
will be followed as much as possible, nevertheless changes or additions may
occur down the road. This activities are going to be weekly monitored, guided

and complemented by the supervisor Andrés Sicard-Ramirez.

7 Intellectual Property

The present research is property of Alejandro Gémez-Londono, Diego Alejandro

Montoya-Zapata and Andrés Sicard-Ramirez as authors.



8 Schedule

Weeks Date Activity

Preliminary steps:
e Clarify the problem.
e Select an ATP.

e Determine a development environments.

1-2 January 26 - February 6

3-6 February 10 - March 6 | Parser implementation

Further development:
e AST to DAG translation

7- TBA March 9 - TBA .
e Typed-DAG construction

e Proof term reconstruction in Agda

References

[1] Jasmin C. Blanchette, Cezary Kaliszyk, and Lawrence C. Paulson. Ham-
mering towards QED. Draft version, 2014.

[2] Jasmin Christian Blanchette and Lawrence C. Paulson. Hammering Away.
A User’s Guide to Sledgehammer for Isabelle/HOL. Institut fiir Informatik,
Technische Universitat Miinchen, 2014.

[3] Martin Davis. Chapter 1 - The early history of automated deduction: Ded-
icated to the memory of Hao Wang. In Handbook of Automated Reasoning,
pages 3 — 15. North-Holland, 2001.

[4] Simon Foster and Georg Struth. Integrating an automated theorem prover
into Agda. In Mihaela Bobaru, Klaus Havelund, GerardJ. Holzmann, and
Rajeev Joshi, editors, NASA Formal Methods, Lecture Notes in Computer
Science, pages 116-130. Springer Berlin Heidelberg, 2011.

[5] H Geuvers. Proof assistants: History, ideas and future. Sadhana, 34(1):3-25,
20009.

[6] Tobias Nipkow, Markus Wenzel, and Lawrence C Paulson. Isabelle/HOL: A
Proof Assistant for Higher-order Logic. Springer-Verlag, Berlin, Heidelberg,
2002.



[7]

Ulf Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Chalmers University of Technology and Goéteborg
University, September 2007.

Andrés Sicard-Ramirez. Reasoning about Functional Programs by Combining
Interactive and Automatic Proofs. PhD thesis, University of the Republic,
Uruguay, 2014. Unpublished doctoral dissertion.

G Sutcliffe. The TPTP Problem Library and Associated Infrastructure: The
FOF and CNF Parts, v3.5.0. Journal of Automated Reasoning, 43(4):337—
362, 2009.



	Statement of the Problem
	Objectives
	General Objective
	Specific Objectives

	Literature Review
	Scope
	Justification
	Methodology
	Intellectual Property
	Schedule

