Affine term structure models: forecasting the Colombian yield curve

Mateo Velásquez-Giraldo

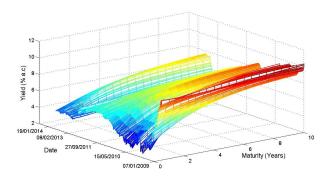
Mathematical Engineering EAFIT University Diego Alexander Restrepo-Tobón

Tutor, Department of finance EAFIT University

Research practice II: Project proposal presentation EAFIT University, Medellín Colombia

February 27th, 2015

The term structure	The Colombian setting	Affine term structure models	Our project	References


The term structure

Mateo Velásquez-Giraldo & Diego A. Restrepo-Tobón ATSMs: forecasting the Colombian yield curv

The term structure ●o	The Colombian setting	Affine term structure models	Our project	References

The term structure of interest rates

Term structure (TS): relates interest rates γ with investment time horizons τ .

Figure 1: Colombian yield curve

Mateo Velásquez-Giraldo & Diego A. Restrepo-Tobón ATSMs: forecasting the Colombian yield curve

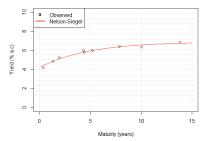
The term structure ○●	The Colombian setting	Affine term structure models	Our project	References
Why und	erstand the	e term structu	ire?	

The TS can be used for:

- Pricing financial instruments.
- Aiding decisions from investors and policymakers.
- Extracting information about the estates of the economy and the financial market.

The term structure	The Colombian setting	Affine term structure models	Our project	References

The Colombian setting


Mateo Velásquez-Giraldo & Diego A. Restrepo-Tobón ATSMs: forecasting the Colombian yield curv

Our project

References

The usual approach in Colombia

Most agents adjust yield curves daily.

Colombian Yield Curve 2014-07-09

- Continuous curves are fit to observed yields.
- Common methods:
 - Nelson-Siegel
 - Cubic splines

Figure 2: Nelson-Siegel example.

The term structure	The Colombian setting ○●	Affine term structure models	Our project	References 00
Why is it	not enoug	h?		

Curve-fitting and interpolation have limitations:

- No information about the TS dynamics.
- No theoretical support.
- Observable yields change frequently in developing markets.
- Past data is discarded.

The term structure	The Colombian setting	Affine term structure models	Our project	References

Affine term structure models

Mateo Velásquez-Giraldo & Diego A. Restrepo-Tobón ATSMs: forecasting the Colombian yield curve

The term structure	The Colombian setting	Affine term structure models ●000	Our project	References
Model or	utline			

• Every yield γ_{τ} is an affine function of a state vector X(t):

$$\gamma_{\tau}(t) = \mathbf{A}(\tau) + \mathbf{B}(\tau)^{\top} \mathbf{X}(t)$$
(1)

• The state vector follows an affine diffusion process under the risk-neutral probability measure *Q*:

$$dX(t) = \mu^{Q}(X)dt + \sigma(X)dW^{Q}(t)$$
(2)

 W^Q : N-dimensional standard brownian motion.

The term structure	The Colombian setting	Affine term structure models	Our project	References

Advantages and difficulties of ATSMs

Advantages:

- Desirable theoretical properties.
- Tractability.
- They model the factors that drive yield changes.
- Panel data is used.

Difficulties:

- Estimation is not straightforward.
- Cross-sectional fit is not as good.

The term structure	The Colombian setting	Affine term structure models	Our project	References 00
Precedir	ng research			

- 1996 Duffie & Kan present ATSMs and their advantages.
- 2002 Dai & Singleton classify ATSMs and outline restrictions on parameters.
- 2008 Restrepo-Tobón & Botero-Ramírez implement two one-factor models in Colombia with good results.
- 2010 Ait-Sahalia & Kimmel estimate ATSMs using closed-form likelihood expansions.

The term structure	The Colombian setting	Affine term structure models	Our project	References
Applicati	ons			

Some applications include:

- Yield forecasts.
- Derivative pricing.
- Decomposition of the yield curve.
- Interpretation.

The term structure	The Colombian setting	Affine term structure models	Our project	References

Our project

Mateo Velásquez-Giraldo & Diego A. Restrepo-Tobón ATSMs: forecasting the Colombian yield curve

The term structure	The Colombian setting	Affine term structure models	Our project ●○○	References
Objective	es			

General To evaluate the performance of various ATSMs in forecasting the Colombian TS.

- Specific Understand the theory and implementation of ATSMs.
 - Replicate empirical applications for the Colombian market.
 - Implement various ATSMs using Colombian yield data.
 - Test and compare the forecast accuracy of the models.

The term structure	The Colombian setting	Affine term structure models	Our project o●o	References 00
Methodo	ology			

Data Yields taken from the Nelson-Siegel curve with the parameters published by *Infovalmer* from 2009 to 2014.

Estimation Maximum likelihood using the closed-form expansions from Ait-Sahalia & Kimmel .

Comparison Models will be ranked by their mean squared forecast error.

The term structure	The Colombian setting	Affine term structure models	Our project ○○●	References
Schedul	е			

Activity	Time range
Literature review	Jan. 26 - Feb. 28
Implementation.	Mar 1 - Mar 31.
Tests of forecast accuracy.	Apr 1 - May 28

Table 1: Project schedule

Report / Presentation	Deadline
Proposal report	Feb. 13th.
Proposal presentation	Feb. 27th.
Progress report	10th week.
Final report	May 29th.
Final presentation	19th week.

Table 2: Course deadlines

The term structure	The Colombian setting	Affine term structure models	Our project	References

References

Mateo Velásquez-Giraldo & Diego A. Restrepo-Tobón ATSMs: forecasting the Colombian yield curv

The term structure	The Colombian setting	Affine term structure models	Our project	References ●○
Referen	ces l			

Ait-Sahalia, Y. and Kimmel, R. L. (2010).

Estimating affine multifactor term structure models using closed-form likelihood expansions.

Journal of Financial Economics, 98(1):113–144.

Dai, Q. and Singleton, K. J. (2000). Specification analysis of affine term structure models. *The Journal of Finance*, 55(5):1943–1978.

Duffie, D. and Kan, R. (1996). A yield-factor model of interest rates. *Mathematical finance*, 6(4):379–406.

Restrepo-Tobón, D. A. and Botero-Ramírez, J. C. (2008). Modelos unifactoriales de tipos de interés: aplicación al mercado colombiano. *Cuadernos de administración*, 21(36).

The term structure	The Colombian setting	Affine term structure models	Our project	References ○●

Thanks for your attention!