

Agent based simulation of dynamic pricing policies of academic courses

Tutor: Prof. Paula Alejandra Escudero-Marín (pescuder@eafit.edu.co) Student: Andrés Felipe Rojas-Amar (arojasa1@eafit.edu.co)

Research Practices for Mathematical Engineering Proposal presentation

> Mathematical Sciences Department EAFIT University

> > February 27 2015

Content

- Problem statement
- Objectives
- Useful previous ABMS uses
- Methodology
- Schedule

What is a dynamic price?

- It is a pricing policy.
- The price is based on the market's demand and supply dynamics.
- It's aim is to increase profit.

What is Agent Based Modelling and Simulation (ABMS)?

- A tool for the decision making process.
- It is made out of 3 main things:
 - The agents: Autonomous actors of the process.
 - The behavior rules: describes the process.
 - The context (topology): gives order and determines the agent's interactions.

What is the problem?

EAFIT's language center is exploring the possibility of applying dynamic prices.

Centro de Idiomas

Some questions appeared:

- How is the demand's behavior?
- What are the product's characteristics?
- If the policy is applied.
 What might be the effects on the market?

How it has been addressed?

 Dynamic prices problems had been mainly addressed as optimization problems.

- It seeks an optimal price policy:
 - Optimal market segmentation.
 - Optimal price per segment.

Why to use ABMS?

 Represents individuals' behaviors and interactions.

- There has been used to model dynamic pricing.
 - We haven't found evidence of its application in academic courses.
- Offers the possibility of evaluating different scenarios.

What is the objective?

To build a conceptual agent based simulation model that:

- Represents the dynamics between a service provider and its clients.
- Captures the product's characteristics and price dynamics over time.
- Shows a possible client reaction over changes in the product's price policy.

Inspira Crea Transforma

UNIVERSIDAD

Some ABMS previous uses

	Торіс	Authors				
For the agent's						
rules For the product's characteristics. For adding complexity	Online auctions	Mizuta, H., & Steiglitz, K. (2000)				
	Product's life cycle	Jinlong et al. (2011)				
	Energy auctions	Ziogos. N. P (2011)				

Some ABMS previous uses

For dynamic pricing policy and product's characteristics	Торіс	Authors				
	Dynamic pricing over product chains	Lin et al. (2011)				
For dynamic pricing policy	Changing from static to dynamic energy pricing	Kowalska-Pyzalska et al. (2014)				
	Response of consumers to dynamic energy prices	Valenzuela et al. (2012)				

Inspira Crea Transforma

Tako, A. A., & Robinson, S. (2010)

Methodology

Inspira Crea Transforma

UNIVERSIDAD

Schedule

	Month											
Activities	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Literature review												
Recollection and data analysis												
Conceptual model construction												
Conceptual model validation												
Model codification												
Simulation model validation												
Strategy evaluation												

Thank you

Inspira Crea Transforma

Bibliography

- Mizuta, H., & Steiglitz, K. (2000). Agent-based simulation of dynamic online auctions. Paper presented at the Simulation Conference, 2000. Proceedings. Winter.
- Jinlong Diao, K. Z., Yanhui Gao. (2011). Agent-based Simulation of Durables Dynamic Pricing. Systems Engineering Procedia, 2(0), 205 - 212. doi: <u>http://dx.doi.org/10.1016/j.sepro.2011.10.024</u>.
- Ziogos, N. P., & Tellidou, A. C. (2011). An agent-based FTR auction simulator. *Electric Power Systems Research*, *81*(7), 1239-1246. doi: 10.1016/j.epsr.2011.03.004
- Lin, C. Y., Kilicay-Ergin, N. H., & Okudan, G. E. (2011). Agent-based Modeling of Dynamic Pricing Scenarios to Optimize Multiple-generation Product Lines with Cannibalization. Complex Adaptive Systems, 6. doi: 10.1016/j.procs.2011.08.057.
- Kowalska-Pyzalska, A., Maciejowska, K., Suszczynski, K., Sznajd-Weron, K., & Weron, R. (2014). Turning green: Agent-based modeling of the adoption of dynamic electricity tariffs. *Energy Policy*, 72, 164-174. doi: 10.1016/j.enpol.2014.04.021.
- Valenzuela, J., Thimmapuram, P. R., & Kim, J. (2012). Modeling and simulation of consumer response to dynamic pricing with enabled technologies. *Applied Energy*, *96*, 122-132. doi: 10.1016/j.apenergy.2011.11.022
- Tako, A. A., & Robinson, S. (2010). Model development in discrete-event simulation and system dynamics: An empirical study of expert modellers. *European Journal of Operational Research*, 207(2), 784-794. doi: 10.1016/j.ejor.2010.05.011
- Salamon, T. (2011). Design of Agent-Based Models : Developing Computer Simulations for a Better Understanding of Social Processes. Repin, Czech Republic: Bruckner Publishing.

