T	
Introd	luction

Haske

Agda

ション ふゆ マ キャット マックシン

Proof Reconstruction Progress report

Diego Alejandro Montoya-Zapata dmonto39@eafit.edu.co

Advisor - Andrés Sicard-Ramírez asr@eafit.edu.co

EAFIT University

April 7, 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Work in progress...

Before starting with the reconstruction of the proofs, it is necessary to focus on the prerequisites:

• Haskell

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Work in progress...

Before starting with the reconstruction of the proofs, it is necessary to focus on the prerequisites:

- Haskell
- Agda

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Work in progress...

Before starting with the reconstruction of the proofs, it is necessary to focus on the prerequisites:

- Haskell
- Agda
- The ATP

Haskell

Agda

ATP

¹Bove and Dybjer (2009), "Dependent Types at Work". $\langle \Xi \rangle \langle \Xi \rangle = 0$

$\overline{\text{Example}^2}$

The type of natural numbers in Agda is defined as the following data type:

Natural numbers in Agda	
data Nat : Set where	
zero : Nat	
succ : Nat -> Nat	

Now we can define the predecessor function:

Predecesso	r function	in Agda
pred	: Nat ->	Nat
pred	zero	= zero
pred	(succ n)	= n

²Bove and Dybjer (2009), "Dependent Types at Work". $\langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle$

Introduction				
	Int	rod	11CT	10n

Haskel

Agda

ATP

ATP

Agda

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

Example

```
Proof of the identity principle in E (p \Rightarrow p).
```

$p \Rightarrow p$

```
# Proof found!
# SZS status Theorem
# SZS output start CNFRefutation.
fof(c_0_0, conjecture, ((p=>p)), file('test.tptp', refl)).
fof(c_0_1, negated_conjecture, (~$true), inference(fof_simplification,[status(thm)],
    [inference(assume_negation,[status(cth)],[c_0_0]))).
fof(c_0_2, negated_conjecture, (~$true), c_0_1).
cnf(c_0_3,negated_conjecture, ($talse), inference(split_conjunct,[status(thm)],[c_0_2])).
cnf(c_0_4,negated_conjecture, ($talse), inference(cn,[status(thm)], [c_0_2])).
cnf(c_0_5,negated_conjecture, ($talse), c_0_4, ['proof']).
# SZS output end CNFRefutation.
```