k-Traveling Repairman Problem and Parallel Machines Scheduling

Research practice 2
Functional analysis and applications research group
Universidad EAFIT
10/04/15
Francisco González-Piedrahita (fgonzal6@eafit.edu.co)
Tutor- Juan Carlos Rivera-Agudelo (jrivera6@eafit.edu.co)

What is the problem?

- Given a set of activities and a set of resources, each activity must be made exactly once
- The resources cannot process activities simultaneously
- The weighted sum of start times is optimized
- The activities 0 and $n+1$ are dummy activities and they indicate the start and the end of the work

Objectives

- Design of metaheuristic algorithms for solving both of the proposed combinatorial optimization.
- Evaluate and compare the performance of the optimization models being applied to k -TRP and scheduling of machines.
- Evaluate the impact of the stochasticity in the problem solution.
- Design alternative methods or models that reduce the impact of the stochasticity in the solution.

$$
\begin{array}{cr}
\operatorname{Min} Z=\sum_{i=1}^{n} t_{i} \cdot w_{i} & \\
\sum_{i=0}^{n+1} x_{i j}=1 & \forall j \epsilon J \backslash\{0, n+1\} \\
\sum_{j=0}^{n+1} x_{i j}=1 & \forall i \epsilon J \backslash\{0, n+1\} \\
\sum_{j=1}^{n} x_{0 j}=m & \\
t_{j} \geq t_{i}+s_{i j}+p_{j}-T \cdot\left(1-x_{i j}\right) & \forall i, j \epsilon J \\
x_{i j} \in\{0,1\} & \forall i, j \epsilon J \\
t_{j} \geq 0 & \forall j \in J \tag{7}
\end{array}
$$

- $\boldsymbol{x}_{i j}$: binary variable that indicates if the activity i is executed next the activity j
- $\boldsymbol{t}_{\boldsymbol{j}}$: decision variable that represents the completion time of the activity j
- $s_{i j}$: transition time between the activity i and activity j
- $\boldsymbol{p}_{\boldsymbol{j}}$: time to process the activity j
- $\boldsymbol{w}_{\boldsymbol{i}}$: represent the importance of the worki

Initial solution

Efficient variable neighborhood

Useful equations

Being σ a sequence, Define:

$$
\begin{gather*}
W_{\sigma}=\sum_{i=1}^{\sigma} w_{\sigma(i)} \tag{1}\\
D_{\sigma}=\sum_{i=1}^{\sigma-1} d_{\sigma(i), \sigma(i+1)} \tag{2}\\
C_{\sigma}=\sum_{i=1}^{\sigma-1}\left(d_{\sigma(i), \sigma(i+1)} \cdot \sum_{j=i+1}^{\sigma} w_{\sigma(j)}\right) \tag{3}
\end{gather*}
$$

Given two sequences: $A=\{1,2,3\} \quad \& \& \quad B=\{4,5\}$

$A \oplus B \quad$ Then from (1),(2) and (3)

$W_{A \oplus B}=W_{A}+W_{B}$
$D_{A \oplus B}=D_{A}+d_{34}+D_{B}$
$C_{A \oplus B}=C_{A}+W_{B}\left(D_{A}+d_{34}\right)+C_{B}$

ELS-Pseudocode

```
Read (coordinates, numberOfVehicles, demands)
while stopCondition1 do
    s=\mp@subsup{s}{0}{}
    s=vnd(s)
    while stopCondition2 do
        ss=s
            for n-times do
                maybeSol = pert(ss)
                ss=vnd(maybeSol)
            end for
            if f(ss)<f(s) then
                s=ss
            end if
        end while
end while
```


Why to do this?

- Industrial applications, such as machines scheduling and goods distribution.
- The complexity (np-hard) of the problems provides an appropriate field of research.
- The problems are part of the current state of the art in areas like the operations research, applied mathematics and optimization.

QUESTIONS?

