NURSE SCHEDULING PROBLEM

PROGRESS REPORT

Sebastián Mesa-Duque

Tutor: Juan Carlos Rivera

Functional Analysis and applications research group

EAFIT University

2015

AGENDA

- 1. Revision of state of the art
 - 2. Mathematical model
 - 3. Solution strategies

STATE OF THE ART

- As observed in (Burke et al. 2004) many different approaches have been used to solve the NSP
 - Stochastic programming
 - Linear and quadratic models
 - ANSOS
 - Multi objective
 - Expert systems and artificial intelligence
 - All kinds of heuristics

TOP PLACES LAST COMPETITION

Valois et al (2010)	 Strictly mathematical approach Partition into 2 sub problems or phases
Nonobe (2010)	 Metaheuristic for a COP Tabu search with an easy transformation Use of binary variables
Zhipeng y Jin-Hao	 Adaptive local search Multi start Diferent neighborhoods Different strategies to explore neigborhoods
Burke et al (2010)	 Use of previously developed staff rostering model Variable depth search and branch and pricing

MATHEMATICAL MODEL

$$\min Z = \Delta Z_1 + \Delta Z_2 + \Delta Z_3 + \Delta Z_4 + \Delta Z_5 + \Delta Z_6 \qquad (1)$$

$$\sum_{s \in S} \sum_{k \in K} x_{nsdk} = 1, \qquad \forall \ n \in N, \ d \in D \qquad (2)$$

$$\sum_{n \in N} x_{nsdk} \cdot r_{nk} \ge RM_{sdk}, \qquad \forall \ s \in S, \ d \in D, \ k \in K \qquad (3)$$

$$\sum_{k \in K} (x_{n,s_1,d,k} + x_{n,s_2,d+1,k}) \le 1, \qquad \forall \ n \in N, \ d \in D \setminus \{|D|\}, \ (s_1,s_2) \in (4)$$

$$\sum_{n \in N} x_{nsdk} \cdot s_{nk} + M_{sdk} \ge RO_{sdk}, \qquad \forall \ s \in S, \ d \in D, \ k \in K \qquad (5)$$

$$\Delta Z_1 = C_1 \cdot \sum \sum M_{sdk} \qquad (6)$$

 $s \in S \ k \in K$

- Work in progress
- Use of variables representing nurse, shift day, and shift
- Soft constraints as decision variables

Where

 x_{nsdk} : nurse n working on shift s on day d with skill k ΔZ_i : cost of soft restriction *i*

Solution strategies

- 2 phases
- Use of assignation of days then shifts
- Improvement through VNS and VSSS

Others

• Familiarization with Gurobi software

REFERENCES

BURKE, Edmund K., CAUSMAECKER, De Patrick, Vanden BERGHE, Greet, and VAN LANDEGHEM, Hendrik. 2004. "The state of the art of nurse rostering". Journal of Scheduling, 7(6):441–499.

VALOUXIS, Christos., GOGOS, Christos., GOULAS, George., ALEFRAGIS, Panayiotis., HOUSOS, Efthymios. 2010. "A systematic two phase approach for the nurse rostering problem".

NONOBE, Koji. 2010. "An approach using a general constraint optimization solver".

LU, Zhipeng., HAO, Jin-Kao. 2010. "Adaptive local search for the first international nurse rostering conpetition".

BURKE, Edmund K., CURTOIS, Tim. 2010. "An ejection chain method and a branch and price algorithm applied to the instances of the first international nurse rostering competition"

THANKYOU

Sebastián Mesa-Duque smesa@eafit.edu.co