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The Interval Number System

Definition - Notation

Consider the closed interval denoted by [a, b] which represents the
set of real numbers given by

[a, b] = {x ∈ (R) : a ≤ x ≤ b}

Define I (R) := { [a, b] : a ≤ b, a, b ∈ R} be the set of all closed
intevals of R. We say a interval [a, b] is degenerate if a = b.

We adopt the infimum-supremum notation for intervals:

X = [X L,XU ] with X L, XU ∈ R

X = Y if X L = Y L ∧ XU = Y U
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The Interval Number System

Relevance of Intersection

Intersection plays a key role in interval analysis. If we have two
intervals containing a result of interest — regardless of how they
were obtained — then the intersection, which may be narrower, also
contains the result.

Figure 1 : Intersection of measurements.
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The Interval Number System

Width, Absolute Value, Midpoint (I)

Length

l(X ) := XU − X L

Absolute Value
|X | := max

{∣∣X L
∣∣ , ∣∣XU

∣∣}
Midpoint

m(X ) :=
1
2
(X L + XU)
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The Interval Number System

Width, Absolute Value, Midpoint (II)

Figure 2 : Width, absolute value, and midpoint of an interval.
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Operations of Interval Arithmetic

Definition of Arithmetic Operations

Let � ∈ {+,−, ·, /} be a binary operation in the real numbers, e.g.,
addition, substraction, multiplication and division.

X � Y := {x � y : x ∈ X , y ∈ Y }

In order to simplify notation, the interval [x , x ] will be referred as the
real number x itself, whenever the context is clear.
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Operations of Interval Arithmetic

Endpoint Formulas for the Arithmetic Operations

Let X , Y ∈ I (R). It can be shown that:

1. X + Y =
[
X L + Y L, XU + Y U] Example

2. −Y =
[
−Y U , −Y L] Example

3. X − Y = X + (−Y ) =
[
X L − Y U , XU − Y L] Example

4. kX =
[
kX L, kXU] Example

5. XY = [min S , max S ], where
S =

{
X LY L,X LY U ,XUY L,XUY U} Example

6. 1/Y =
[
1/Y U , 1/Y L] Example

7. X/Y = X · (1/Y ) Example
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Operations of Interval Arithmetic

Hukuhara Difference

Difference
Let X = [X L,XU ] and Y = [Y L,Y U ] be two closed intervals in R.
If X L − Y L ≤ XU − Y U , then the Hukuhara difference Z = X 	 Y
exists and Z = [ZL,ZU ] = [X L − Y L,XU − Y U ]. Example

Note
The usual substraction and the Hukuhara difference betwen two
intervals need not be the same:

[X L − Y U , XU − Y L] = X − Y 6= X 	 Y = [X L − Y L,XU − Y U ]
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Limits and Continuity

Hausdorff Metric

Let X , Y ⊆ Rn. Then the Hausdorff metric between X and Y is
defined by

dH(X ,Y ) = max

{
sup
x∈X

inf
y∈Y
‖x − y‖, sup

y∈Y
inf
x∈X
‖x − y‖

}

where ‖·‖ is a norm in Rn.

If X = [X L,XU ] and Y = [Y L,Y U ] are two closed intervals in R, it
is not hard to see that

dH(X ,Y ) = max
{
|X L − Y L|, |XU − Y U |

}
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Limits and Continuity

Convergence

Convergence in I (R)
Let {Xn} and X ∈ I (R). We say that the sequence of intervals {Xn}
converges to X , denoted by limn→∞ Xn = X , if, for every ε > 0,
there exists N ∈ N, such that, for n ≥ N, we have dH(Xn,X ) < ε.

Lemma

lim
n→∞

Xn = X if and only if X L
n → X L ∧ XU

n → XU
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Limits and Continuity

Functions in I (R) (I)

Interval-valued Function
The function f : Rn → I (R) defined on an Eucliden space Rn is
called an interval-valued function. This function can also be written
as f (x) = [f L(x), f U(x)], where f L and f U are real-valued functions
defined on Rn and satisfy f L(x) ≤ f U(x) for every x ∈ Rn.

Limit of a Function
For c ∈ Rn we write limx→c f (x) = X if, for every ε > 0, there exists
δ > 0 such that, for ‖x− c‖ < δ, we have dH(f (x),X ) < ε.
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Limits and Continuity

Functions in I (R) (II)

Lemma
Let f be an interval-valued function defined on Rn and X = [X L,XU ]
be an interval in R. Then limx→c f (x) = X if and only if
limx→c f L(x) = X L and limx→c f U(x) = XU .

Continuity
Let f be an interval-valued function defined on Rn. We say that f
is continuous at c ∈ Rn if

lim
x→c

f (x) = f (c)
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Limits and Continuity

Example

Figure 3 : Graphic representation f (x) = [x2 + x + 1, x2 + 3].
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Optimization Problem Formulation - KKT Conditions

Optimization Problems

Problem (RVOP)

min f (x) = f (x1, ..., xn)

subject to gi (x) ≤ 0

Problem (IVOP)

min f (x) = [f L(x1, ..., xn), f U(x1, ..., xn)] = [f L(x), f U(x)]

subject to gi (x) ≤ 0
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Order Relations for Intervals

Order Relations

Let X = [X L,XU ] and Y = [Y L,Y U ] ∈ I (R). It is possible to ex-
press X as a function of its center and width, as X = 〈m(X ), w(X )〉.

Order Relations

X �LU Y if and only if X L ≤ Y L and XU ≤ Y U

X �CW Y if and only if m(X ) ≤ m(Y ) and w(X ) ≤ w(Y )

X �UC Y if and only if XU ≤ Y U and m(X ) ≤ m(Y )
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Order Relations for Intervals

Solution Types

Type-I
Let x∗ be a feasible solution, i.e., x∗ ∈ X . We say that x∗ is a
type-I solution of problem (IVOP) if there exists no x ∈ X such that
f (x) ≺LU f (x∗).

Type-II
Let x∗ be a feasible solution, i.e., x∗ ∈ X . We say that x∗ is a
type-II solution of problem (IVOP) if there exists no x ∈ X such that
f (x) ≺LU f (x∗) or f (x) ≺CW f (x∗).
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Order Relations for Intervals

KKT Conditions - Real Case

Theorem
Assume that the constraint functions gi : Rn → R are convex on Rn

for i = 1, ...,m. Let X = {x ∈ Rn : gi (x) ≤ 0, i = 1, ...,m be a
feasible set and a point x∗ ∈ X . Suppose that the objective function
f : Rn → R is convex at x∗, and f , gi , i = 1, ...m, are continuously
differentiable at x∗. If there exist (Langrange) multipliers 0 ≤ µi ∈
R, i = 1, ...,m, such that
1. ∇f (x∗) +

∑m
i=1 µi∇gi (x∗) = 0

2. µigi (x∗) = 0 for all i = 1, ...,m.
then x∗ is an optimal solution of problem (RVOP).
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Order Relations for Intervals

KKT Conditions - Interval-valued Case

Theorem
Suppose that the the real-valued constraint functions gi , i = 1, ...,m,
of problem (IVOP) satisfy the KKT assumptions at x∗ and the
interval-valued objective function f : Rn → I (R) is LU-convex and
weakly continuously differentiable at x∗. If there exist (Langrange)
multipliers 0 < λL, λU ∈ R and 0 ≤ µi ∈ R, i = 1, ...,m, such that
1. λL∇f L(x∗) + λU∇f U(x∗) +

∑m
i=1 µi∇gi (x∗) = 0

2. µigi (x∗) = 0 for all i = 1, ...,m.
then x∗ is a type-I and type-II solution of problem (IVOP).
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Parameter Estimation

Interval-Valued Polynomial

Interval-Valued Polynomial

Let ci = [cL
i , c

U
i ] ∈ I (R) for i ∈ N. We say p(x) is an interval-valued

polynomial if it can be expressed in the form

p(x) =
n∑

i=0

ci · x i =
n∑

i=0

[cL
i , c

U
i ] · x i
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Parameter Estimation

Matrix Representation

Vandermonde Matrix
Let ci = [cL

i , c
U
i ] ∈ I (R) for i ∈ {1, ..., n}.

y1
...
ym

 =


1 x1 x2

1 · · · xn
1

1 x2 x2
2 · · · xn

2
...

...
...

. . .
...

1 xm x2
m · · · xn

m


c0...
cn

+

ε0...
εn


Y = VC + E

In this case, V is called a Vandermonde matrix.
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Parameter Estimation

Example

Figure 4 : Interval-valued polynomial graphic.
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Parameter Estimation

What do we look for?

In a nutshell
Find a parameter configuration that reduces at most as possible the
discrepancies between the observed data and the information pro-
vided by the model proposed.

min
m∑

i=1

[m(yi )−m(ŷi )]
2

`2 Norm - Least Squares

min
m∑

i=1

dH (yi , ŷi )

`1 Norm - Least Absolute Values
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Parameter Estimation

`2 Norm - Least Squares Estimation

Figure 5 : Parameter estimation result using OLS.
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Parameter Estimation

`1 Norm - Heuristic

Figure 6 : Parameter estimation result using Differential Evolution.
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Parameter Estimation

`1 Norm - CVX

Figure 7 : Parameter estimation result using CVX .
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Next Challenges

Next Challenges

Experimental Application

∂2u
∂t2

= c2∇2ut

What is required?
I Experimental Data
I Numerical Methods - Computational Implementation
I Estimates Validation
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Examples

Addition - Example

Addition

X = [1, 2] Y = [−4, 5]

X + Y = [1, 2] + [−4, 5] = [1+ (−4), 2+ 5] = [−3, 7]

Back to Operations
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Examples

Negative - Example

Negative

X = [−5, 2]

−X = [−2, −(−5)] = [−2, 5]

Back to Operations
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Examples

Substraction - Example

Substraction

X = [−5, 2] Y = [−1, 9]

X + (−Y ) = [−5, 2] + [−9, 1] = [−14, 3]

Back to Operations
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Examples

Scalar Multiplication - Example

Scalar Multiplication (I)

X = [−5, 2] k = 3

3X = [−5 · 3, 2 · 3] = [−15, 6]

Back to Operations

Scalar Multiplication (II)

X = [−5, 2] k = −8

−8X = [2 · −8, −5 · −8] = [−16, 40]

Back to Operations
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Examples

Product - Example

Product

X = [−5, 2] Y = [−1, 9]

S = {(−5)(−1), (−5)(9), (2)(−1), (2)(9)}

XY = [min S , max S ] = [−45, 18]

Back to Operations
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Examples

Multiplicative Inverse - Example

Multiplicative Inverse (I)

X = [2, 8]→ 1
X

=

[
1
8
,
1
2

]
Back to Operations

Multiplicative Inverse (II)

X = [−1, 5]

1
X

=

{
1
x
: x ∈ X

}
= (−∞,∞)

Back to Operations
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Examples

Division - Example

Division

X = [−5, 2] Y = [3, 7]

1
Y

=

[
1
7
,
1
3

]
S =

{
(−5)

(
1
7

)
, (−5)

(
1
3

)
, (2)

(
1
7

)
, (2)

(
1
3

)}
X
Y

= [min S , max S ] =
[
−5
3
,
2
3

]
Back to Operations
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Examples

Hukuhara Difference - Example

Hukuhara Difference

X = [−5, 2] Y = [−1, 3]

X 	 Y = [−5, 2]	 [−1, 3] = [−5− (−1), 2− 3]

X 	 Y = [−4, −1]

Back to H-Difference
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Examples

Additive Inverses - Example

Additive Inverses

X = [−5, 2]

Usual Difference

X − X = [−5, 2]− [−5, 2] = [−5, 2] + [−2, 5]

X − X = [−7, 7] = 7[−1, 1] 3 [0, 0]

Hukuhara Difference

X 	 X = [−5, 2]	 [−5, 2] = [−5− (−5), 2− 2] = [0, 0]

Back to main
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Examples

Multiplicative Inverses - Example

Multiplicative Inverses

X = [3, 7]

1
X

=

[
1
7
,
1
3

]
S =

{
(3)
(
1
7

)
, (3)

(
1
3

)
, (7)

(
1
7

)
, (7)

(
1
3

)}
X
X

= [min S , max S ] =
[
3
7
,
7
3

]
3 [1, 1]

Back to main
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