# Affine term structure models: forecasting the Colombian yield curve

### Mateo Velásquez-Giraldo

Mathematical Engineering EAFIT University

## Diego Alexander Restrepo-Tobón

Tutor, Department of finance EAFIT University

Research practice II: progress report EAFIT University, Medellín Colombia

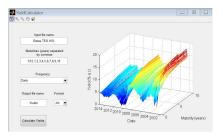
April 10th, 2015



| Context<br>● | Methodology | Partial results | Summary<br>00 | References<br>00 |
|--------------|-------------|-----------------|---------------|------------------|
| ATSMs        |             |                 |               |                  |

**Term structure (TS)**: relates yields *Y* with investment horizons  $\tau$ .

**ATSMs**: model yields as affine functions of a state vector X(t):


$$Y_{\tau}(t) = A(\tau) + B(\tau)^{\top} X(t)$$
(1)

The state vector follows an affine diffusion process:

$$dX(t) = \mu(X)dt + \sigma(X)dW(t)$$
(2)

| Context | Methodology | Partial results | Summary | References |
|---------|-------------|-----------------|---------|------------|
| o       | ●o          |                 | 00      | 00         |
| Data    |             |                 |         |            |

#### Nelson-Siegel curves published by Infovalmer.



- Time period: Aug.2002-Mar.2015
- Daily observations.

Figure 1: Data interface.



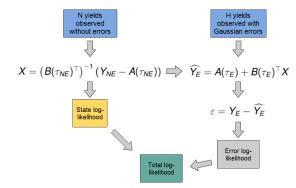



Figure 2: Loglikelihood calculation.

Implemented for 9 models with 1-3 states.

| Context<br>o | Methodology  | Partial results<br>●oooo | Summary<br>00 | References |
|--------------|--------------|--------------------------|---------------|------------|
| Optim        | ization proc | cedure                   |               |            |

- MATLAB<sup>®</sup>'s fminsearch(...):
  - $\bullet\,$  Solutions vary only  $\approx 10\%$  from their initial values.
  - Solutions don't always move into the feasible space.
  - The obtained fit isn't good.
- Differential evolution heuristic:
  - Diversifies well.
  - Solutions are generally feasible.
  - Is time-costly.
  - Parameters must be defined.
  - Stopping criterion must be defined.

| Context<br>o | Methodology | Partial results<br>o●ooo | Summary<br>00 | References |
|--------------|-------------|--------------------------|---------------|------------|
| Some         | problems I  |                          |               |            |

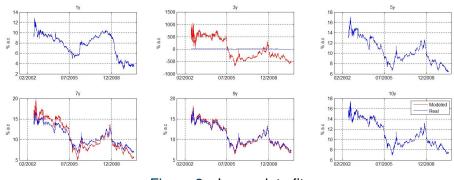



Figure 3: Incomplete fit.

| Context<br>o | Methodology | Partial results | Summary<br>00 | References |
|--------------|-------------|-----------------|---------------|------------|
| Somo         | nroblome l  | 1               |               |            |



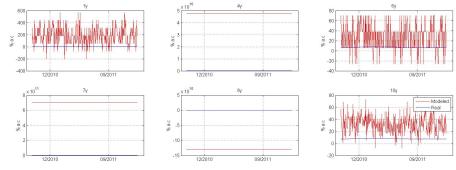



Figure 4: Estimation failure.

| Context  | Methodology | Partial results | Summary | References |
|----------|-------------|-----------------|---------|------------|
| o        |             | 000●0           | 00      | oo         |
| Simulati | on tests    |                 |         |            |

We ran tests using simulated data and found:

- The feasible region is complicated.
- A lot of data must be used for the parameters to converge.
- It is possible to obtain a good fit with "wrong" parameters.

| Context | Methodology | Partial results | Summary | References |
|---------|-------------|-----------------|---------|------------|
| o       | oo          | oooo●           | 00      |            |
| Impro   | vomonto     |                 |         |            |



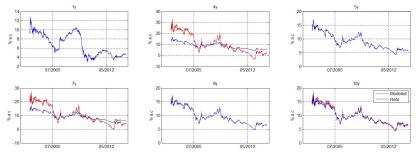



Figure 5: A33 model.

- Whole sample.
- New heuristic parameters.

| Context<br>o | Methodology<br>oo | Partial results | Summary<br>●○ | References |
|--------------|-------------------|-----------------|---------------|------------|
| Current      | state of the      | project         |               |            |

- We have a good amount of data.
- The estimation procedure has been implemented for 9 ATSMs.
- Estimation is not consistent.

| Context<br>o | Methodology<br>oo | Partial results | Summary<br>⊙● | References |
|--------------|-------------------|-----------------|---------------|------------|
| Sched        | ule               |                 |               |            |

| Activity                       | Time range        |
|--------------------------------|-------------------|
| Literature review $\checkmark$ | Jan. 26 - Feb. 28 |
| Implementation.                | Mar 1 - Mar 31.   |
| Tests of forecast accuracy.    | Apr 1 - May 28    |

Table 1: Project schedule

| Report / Presentation              | Deadline   |
|------------------------------------|------------|
| Proposal report √                  | Feb. 13th. |
| Proposal presentation $\checkmark$ | Feb. 27th. |
| Progress report √                  | 10th week. |
| Final report                       | May 29th.  |
| Final presentation                 | 19th week. |

Table 2: Course deadlines

| Context<br>o | Methodology | Partial results | Summary<br>00 | References<br>●○ |
|--------------|-------------|-----------------|---------------|------------------|
| Refere       | ences       |                 |               |                  |



#### Ait-Sahalia, Y. (2008).

Closed-form likelihood expansions for multivariate diffusions. The Annals of Statistics, 36(2):906–937.

#### Chen, R.-R. and Scott, L. (1993).

Maximum likelihood estimation for a multifactor equilibrium model of the term structure of interest rates.

The Journal of Fixed Income, 3(3):14-31.

| Context | Methodology | Partial results | Summary | References |
|---------|-------------|-----------------|---------|------------|
|         |             |                 |         | 00         |
|         |             |                 |         |            |

# Thanks for your attention!