
1

Affine term structure models: forecasting the
Colombian yield curve

Research practice II: Final report

Mateo Velásquez-Giraldo
Mathematical Engineering

EAFIT University

Diego A. Restrepo-Tobón
Tutor, Department of Finance

EAFIT University

I. INTRODUCTION

The term structure of interest rates (TS for short)
shows the relationship between interest rates and in-
vestment time horizons at a given time. Approximating
and forecasting the TS is useful for pricing financial
instruments and managing risk.

The most common way of representing the TS is using
yield curves. A yield curve is obtained by plotting the
yields of different bonds with similar credit risk (e.g.
issued by the same institution) against their maturities.
An example of a yield curve constructed with the data
we use in this project is presented in Fig 1.

Affine term structure models (ATSMs) approximate
the yield curve as a function of N factors which can be
observable (macroeconomic variables) or latent. We will
denote the yield of a zero-coupon bond with maturity
τ by γτ . ATSMs assume [1] that the short rate is an
affine function1 of a state vector X(t) which contains
the underlying factors:

r = lim
τ→0

γτ = δ0 + δ>1 X(t) (1)

with δ0 ∈ R and δ1 ∈ RN .

1A function F : RN → RM is said to be affine if F (X) =
A+B ∗X for some vector A and matrix B.

The state vector is assumed to follow an affine diffu-
sion process under the risk-neutral measure Q:

dX(t) = K̃
(

Θ̃−X(t)
)
dt+ Σ

√
S(t)dW̃ t (2)

where K̃, Σ ∈ RN×N , Θ̃ ∈ RN , W̃ is an N-
dimentional independent brownian motion and S(t) is
a N ×N diagonal matrix with entries:

[S(t)]i,i = αi + β>i X(t) (3)

with αi ∈ R and βi ∈ RN .
The market price of risk Λ(X) ∈ RN must also be

specified in order to obtain the physical measure (P)
dynamics. We assume, as in [2], that Λ(t) =

√
S(t)λ,

where λ is a vector of constants. Under these assump-
tions, the state process is also affine under the physical
measure P :

dX(t) = K(Θ−X(t))dt+ Σ
√
S(t)dWt (4)

Under this structure, [1] shows that the yield for any
maturity τ can be obtained as an affine function of the
state vector:

γτ (t) = A(τ) +B(τ)>X(t) (5)

2

where coefficients B(τ) and constants A(τ) are found
by solving the following system of differential equations:

a′(τ) = −δ0 + b(τ)>K̃Θ̃ +
1

2

N∑
i=1

[b(τ)>Σ]2iαi

b′(τ) = δ1 − K̃>b(τ) +
1

2

N∑
i=1

[b(τ)>Σ]2iβi

(6)

with a(0) = 0, b(0) = ~0, A(τ) = −a(τ)/τ and
B(τ) = −b(τ)/τ . These equations are consequences of
the no-arbitrage hypothesis, which are derived in [3].

In this project we follow the methodology presented
in [4] to estimate nine ATSMs using Colombian data.

II. METHODOLOGY

A. Data

As the Colombian market is still in its development
phase, it is not possible to obtain observations of zero-
coupon yields for fixed maturities over long time pe-
riods. We therefore use the Nelson-Siegel model to
approximate yield curves. Curves’ parameters are those
published daily by Infoval in the time period between
1/08/2002 and 03/02/2015.

Taking out non-bursatile days, our sample amounts
to 3051 days. Estimations are conducted using the first
2000 observations, reserving the rest for out of sample
forecasting validations.

We use this data to calibrate the nine ATSMs presented
in [4], which range from one to three factors. We adopt
the notation proposed in [2], which denotes models as
AM (N), where N is their number of factors and M ≤ N
is the number of them which appear in the volatility term
of Eq 2 and Eq 4.

To calibrate the models, we follow the methodology
presented in [4]. We assume that the 3 year, 6 year and
9 year yields are observed with independent Gaussian
errors. For a model with N factors we also assume that
N yields are observed without errors:
• 1 year yield for one-factor models.
• 1 year and 10 year yields for two-factor models.
• 1 year, 5 year and 10 year yields for three-factor

models.

B. The loglikelihood function

We use the yield loglikelihood function presented in
[4]. This approach is summarized in Fig 2.

For a given set of parameters, a system of linear
equations is obtained by using Eq 5 for every maturity
observed without error. This system can be solved for

every point of time, as it has N equations and N
variables (the value of every state). A time series of the
the value of each state is thus obtained.

Once the state is calculated, we obtain estimators for
yields observed with errors using Eq 5. We calculate
errors as the differences between estimated and observed
values. The loglikelihood of errors can then be found
using the Gaussian density function.

The state loglikelihood is obtained with the approxi-
mations proposed by Aı̈t-Sahalia & Kimmel in [5]. Using
the change of variable theorem, the implied state loglike-
lihood multiplied by a jacobian determinant to obtain the
loglikelihood of yields observed without errors.

The total loglikelihood of the observed yields is the
sum of the loglikelihood of the observation errors and
the loglikelihood of yields observed without error. Eval-
uating the loglikelihood of a time series of yields thus
involves: solving systems of differential equations, mul-
tiple calculations involving inverse matrices and various
callings of sub-function.

The domain of feasible parameters is also heavily
restricted for various models. We apply the restrictions
found in [4]. An additional restriction is that states which
affect volatility have to be non-negative.

C. Estimation procedure

The preceding characteristics of the loglikelihood
function make it difficult to maximize using methods
with theoretical bases. We turn to heuristics looking for
approximate but attainable solutions. We use the ”Dif-
ferential Evolution” heuristic [6] because of its capacity
to search for optimal parameter values in a continuous
space.

Differential Evolution’s pseudocode is presented in
Algorithm 1 and an implementation in Matlab R© R2013A
is available in Appendix B. Within the method, solutions
(sets of parameter values) are treated as vectors. We
represent the j-th solution of a population P as P (j),
and its i-th parameter value as P (j)i. ‘Evolution’ is
recreated by comparing individuals (solutions) from an
initial population with new ones and preserving the better
ones.

New individuals are generated as a linear combination
of individuals from the initial population. Before being
compared with the initial individual, they can ‘mutate’
by changing some of their parameter values with a given
probability. This ‘evolutionary’ process is repeated over
numerous generation and the best (according to a given
objective function) individual from the last population is
taken as the final solution.

As every other heuristic method, there is no guarantee
that the obtained solution will be a global maximum

3

Data: # Generations:ng, Population size:np,
F ∈ [0, 2], CR ∈ [0, 1]

P1← Random initial population
for i = 1 to ng do

P0← P1
for j = 1 to np do
{a, b, c} ← random individuals from P0
V ← a+ F ∗ (b− c)
for k = 1 to #Params do

if rand ≤ CR then
Uk ← Vk

else
Uk ← P0(j)k

end
end
if fobj(U) ≤ P0(j) then

P1(j)← U
end

end
end

Algorithm 1: Differential evolution.

or minimum. However given the complexity of the
likelihood function that is being maximized, we accept
solutions as approximations that meet our requirements.
Another problem that emerges from the use of heuristics
(and numerical methods) is that the parameter standard
errors can not be computed in a straight forward manner
(as is the case in ordinary least squares, for example).

We estimate parameters of simulated affine diffusion
processes in order to test method’s pertinence to our
problem and verify the accuracy of Aı̈t-Sahalia & Kim-
mel’s approximations. Simulations are carried out using
Euler’s numerical scheme.

III. RESULTS

In this section we discuss the main products obtained
from this research practice.

A. Implementation

The likelihood function was implemented in Matlab R©

R2013A. The system of ordinary differential equations
is solved using its ode45(...) solver. However, the solver
needs to be executed with a timeout because some pa-
rameter values can produce unbounded solutions, which
make it very slow.

The Differential Evolution algorithm was also imple-
mented. Matlab’s Parallel computing toolbox was used in
order to speed up the algorithm’s execution. The source
code is in Appendix B.

B. Simulation tests

We simulated diffusion processes with each of the
models presented in Appendix A using Euler’s numeric
scheme and tried to estimate the data-generating pa-
rameters using Aı̈t-Sahalia & Kimmel’s loglikelihood
functions. Estimation was carried out using Differential
Evolution and Matlab’s fminserach(...). Results for one
simulation with each model are reported in Table I.

From the results, it is evident that models present
identification problems. Both methods often achieve
loglikelihoods close to the values obtained with real
parameters. However, estimated parameter values differ
greatly from those used in the simulations. This issue is
reported in [4].

Nevertheless, both methods almost always manage to
obtain loglikelihood values which are even greater than
the ones produced by real parameter values. This tests
show that both optimization procedures are able to find
solutions which are very close to a good value. This is
an important characteristic to check when using heuristic
methods.

The most important results from Table I are the enor-
mous loglikelihood values obtained for the A1(1) and
the A1(3) models using Differential Evolution. These
values show that Aı̈t-Sahalia & Kimmel’s approximation
sometimes return huge, wrong values. Repeated tests
pointed to state variables which affect volatility as the
cause of the problem. Models A0(1), A0(2) and A0(3)
weren’t affected by this issue in any of the tests.

C. Estimation with Colombian data

The parameters of each model were estimated us-
ing the data and maturities described in Section II-A.
Matlab’s fminsearch(...) performed poorly when fitting
yields: its solutions remained very close to the initial
solution and thus weren’t very good. This behavior might
emerge from the complexity of the feasible region, which
makes it hard for search methods to succeed.

When the observed variable is the state vector X(t) (as
in our simulation tests), it doesn’t have to be estimated,
which makes the procedure simpler. When fitting yields,
X(t) is dependent on parameter values (as shown in
Fig.2) and it changes with every solution. Many of the
solutions obtained in the estimation must be discarded as
they produce non-feasible values for X(t), which raises
the complexity of the feasible region.

Differential evolution performed better as it greatly
improved feasible solutions (when found). The heuris-
tic’s parameters were set trying to cover a big part of
the feasible region (numerous populations) and making
small jumps when generating new individuals (small

4

fminsearch(...) Differential Evolution

Model
Loglikelihood
with real params

Loglikelihood
Mean parameter
relative error

Loglikelihood
Mean parameter
relative error

A0(1) 4049 4049 1% 4049 1%

A1(1) 4967, 6 4967, 6 60348% 6.1× 1020 109710%

A0(2) 8023 8023, 5 43% 8023, 5 43%

A1(2) 6440, 5 6449, 9 82% 6449, 9 80%

A2(2) 5185, 7 5185, 3 151% 5187, 3 26%

A0(3) 12181 12186 213% 12186 203%

A1(3) 12533 12534 228% 1, 4× 1035 825%

A2(3) 12885 12830 914% 12891 140%

A3(3) 6951, 9 6954, 6 400% 6960, 2 634%

Table I: Estimation with simulated data. The loglikelihood function evaluated with the simulation parameters is
presented.

differential step F) in order to retain feasibility. The
parameter values are presented in Table II.

Parameter Value
ng 400

np 200

F 0.4

CR 0.9

Table II: Differential Evolution parameter values used
for estimation.

The nine models can be categorized into three groups
by the result of its estimation:

1) A0(1), A1(1), A0(2), A1(2) and A0(3) were ad-
justed succesfully.

2) Feasible solutions were found for A1(3) and
A2(3). However, loglikelihoods take big values
and the modeled yields don’t adjust to observa-
tions.

3) The algorithm wasn’t able to find solutions which
met all restrictions for A2(2) and A3(3).

In the second case, the big loglikelihood values are
produced by Aı̈t-Sahalia & Kimmel’s approximations.
The state loglikelihood seems to be able to get arbitrarily
big, which makes the error loglikelihood lose relevance.
This results in fits as the one presented in Fig 3, where
modeled yiels are very different from observed ones and
the yield loglikelihood was 5.59× 1038.

As a test, we estimated an A1(3) model omitting
solutions with state loglikelihoods greater that 1010 and
results improved greatly. This makes us believe that big
values are indeed an error.

The third case consists of two model in which all the
states affect volatility. This makes all states need to be
non-negative in order to be feasible. States obtained from
our data seem to not be able to fulfill non-negativity

and existence restrictions [4]. We made tests dropping
existence restrictions and feasible solutions were quickly
found.

Plots of the fit of every model in case 1 are presented
in Figs 4-8. The achieved fit is overall very good. Mean
errors for each maturity (omitting the ones observed
without error) are presented in Table III.

3 years 6 years 9 years
A0(1) 0, 5334% 0, 0992% −0, 6731%
A1(1) 0, 0586% −0, 0970% 0, 0521%

A0(2) 0, 0634% 0, 0051% −0, 0083%
A1(2) −0, 5367% −0, 1075% 0, 0024%

A0(3) 0, 3378% −0, 0279% −0, 0178%

Table III: Mean errors for each maturity and model.

As it was expected, fit gets better as the number of
factors increase. However, the number of factors that
affect volatility can make the fit better or worse.

One-factor models manage to capture the mean of
longer maturities using the 1-year yield as observed
without error. In two factor models, the inclusion of
a longer maturity yield (10 years) as observed without
error makes the models flexible enough to capture most
of the deviations from the mean. Finally, the three-factor
model is able to represent yields very closely.

To check the accuracy of the A0(3) model, we esti-
mated it using yields from 1 to 10 years. The obtained
fit is presented in Fig.9. The model can adjust all yields
with great precision.

IV. CONCLUSIONS AND FURTHER WORK

In this project we intended to make a first step towards
the application of ATSMs in Colombia. We implemented
an estimation methodology based on the one proposed by

5

Aı̈t-Sahalia & Kimmel in [4], which is already working
well for five models ranging from one to three factors.

Through simulation we managed to identify a problem
that can emerge from using the loglikelihood expansions
from [5] when estimating diffusion processes. We intend
to contact the author to ask him about what might be
causing it.

Two different methods were also tested for optimizing
the yield loglikelihoods. Matlab’s fminsearch(...) was
found to be stagnant because of the complexity of the
feasible space. An evolutionary algorithm, Differential
evolution, obtained better results.

Out of the five models for which the estimation
procedure is working, A0(2) and A0(3) obtained the
best in-sample fit, deviating only a few basis points from
observed yields. It was also shown that the A0(3) model
is able to adjust a greater number of yields very closely.

In upcoming months we intend to test the forecast
accuracy of the estimated models using data from 2012
to 2015. Forecasts and confidence intervals for different
horizons will be obtained using Montecarlo simulation
and Euler’s numeric scheme.

We expect to be able to determine the cause of the
problem with the state loglikelihood approximations. If
we were to solve it, our estimation procedure would work
for new models which we would include in further tests.

Another possible research matter could be an analysis
of the confiability of our estimation. As heuristic meth-
ods and loglikelihood approximations are used, there is
no straight forward way of determining confidence inter-
vals for estimated parameters. Numerical or simulation-
based methods could be explored.

REFERENCES

[5] Ait-Sahalia, Y. (2008). Closed-form likelihood ex-
pansions for multivariate diffusions. The Annals of
Statistics, 36(2):906–937.

[4] Ait-Sahalia, Y. and Kimmel, R. L. (2010). Esti-
mating affine multifactor term structure models using
closed-form likelihood expansions. Journal of Finan-
cial Economics, 98(1):113–144.

[2] Dai, Q. and Singleton, K. J. (2000). Specification
analysis of affine term structure models. The Journal
of Finance, 55(5):1943–1978.

[3] Duffie, D. and Kan, R. (1996). A yield-factor model
of interest rates. Mathematical Finance, 6(4):379–
406.

[1] Piazzesi, M. (2010). Affine term structure models.
Handbook of financial econometrics, 1:691–766.

[6] Storn, R. and Price, K. (1997). Differential
evolution–a simple and efficient heuristic for global

optimization over continuous spaces. Journal of
global optimization, 11(4):341–359.

6

0
2

4
6

8
10

2002200420062008201020122014

5

10

15

Maturity (Years)
Date

Y
ie

ld
(%

a.
c)

Colombian Yield Curve

Figure 1: Data used throught the proyect.

Yields
observed

without error

X = (B(τNE)>)−1(YNE − A(τNE)) ŶE = A(τE) + B(τE)>X

State loglikelihood
Yields

observed
with error

ε = YE − ŶE

Error loglikelihoodTotal loglikelihood

Figure 2: Yield loglikelihood.

7

Figure 3: A1(3) results.

Figure 4: A0(1) results.

Figure 5: A1(1) results.

8

Figure 6: A0(2) results.

Figure 7: A1(2) results.

9

Figure 8: A0(3) results.

Figure 9: A0(3) results with 10 yields. Modeled and real yields are very close.

10

APPENDIX A
MODEL SPECIFICATIONS

Here we present each one of the models mentioned in this study. The models’ structures were taken from [4].
Each N -factor model consists of:

The short rate dynamics:

r = δ0 + δ>1 X(t)

A diffusion process for the state under the physical measure P :

dX(t) = µp(X(t)) + σ(X(t))dWP

And a diffusion process for the state under the risk-neutral measure Q:

dX(t) = µq(X(t)) + σ(X(t))dWQ

Where δ1, µp and µq ∈ RN , σ ∈ RN×N and WP and WQ are N -dimensional standard brownian motions under
their respective measures.

A. A0(1) model

µp(X(t)) = b11X(t)

µq(X(t)) = −λ1 + b11X(t)

σ(Xt) = 1

B. A1(1) model

µp(X(t)) = a1 + b11X(t)

µq(X(t)) = a1 + (b11 − λ1)X(t)

σ(X(t)) =
√
X(t)

C. A0(2) model

µp(X(t)) =

[
b11 0

b21 b22

]
X(t)

µq(X(t)) = −

[
λ1

λ2

]
+

[
b11 0

b21 b22

]
X(t)

σ(X(t)) =

[
1 0

0 1

]

11

D. A1(2) model

µp(X(t)) =

[
a1

0

]
+

[
b11 0

b21 b22

]
X(t)

µq(X(t)) =

[
a1

−λ2

]
+

[
b11 − λ1 0

b21 − λ2β21 b22

]

σ(X(t)) =

[√
X1(t) 0

0
√

1 + β21X1(t)

]

E. A2(2) model

µp(X(t)) =

[
a1

a2

]
+

[
b11 b12

b21 b22

]
X(t)

µq(X(t)) =

[
a1

a2

]
+

[
b11 − λ1 b12

b21 b22 − λ2

]

σ(X(t)) =

[√
X1(t) 0

0
√
X2(t)

]

F. A0(3) model

µp(X(t)) =

b11 0 0

b21 b22 0

b31 b32 b33

X(t)

µq(X(t)) =

−λ1−λ2
−λ3

+

b11 0 0

b21 b22 0

b31 b32 b33

X(t)

σ(X(t)) =

1 0 0

0 1 0

0 0 1



12

G. A1(3) model

µp(X(t)) =

a10
0

+

b11 0 0

b21 b22 b23

b31 b32 b33

X(t)

µq(X(t)) =

 a1

−λ2
−λ3

+

 b11 − λ1 0 0

b21 − λ2β21 b22 b23

b31 − λ3β31 b32 b33

X(t)

σ(X(t)) =


√
X1(t) 0 0

0
√

1 + β21X1(t) 0

0 0
√

1 + β31X1(t)


H. A2(3) model

µp(X(t)) =

a1a2
0

+

b11 b12 0

b21 b22 0

b31 b32 b33

X(t)

µq(X(t)) =

 a1

a2

−λ3

+

 b11 − λ1 0 0

b21 b22 − λ2 0

b31 − λ3β31 b32 − λ3β32 b33

X(t)

σ(X(t)) =


√
X1(t) 0 0

0
√
X2(t) 0

0 0
√

1 + β31X1(t) + β32X2(t)


I. A3(3) model

µp(X(t)) =

a1a2
a3

+

b11 b12 b13

b21 b22 b23

b31 b32 b33

X(t)

µq(X(t)) =

a1a2
a3

+

b11 − λ1 b12 b13

b21 b22 − λ2 b23

b31 b32 b33 − λ3

X(t)

σ(X(t)) =


√
X1(t) 0 0

0
√
X2(t) 0

0 0
√
X3(t)



13

APPENDIX B
DIFFERENTIAL EVOLUTION IMPLEMENTATION IN MATLAB R©

function output = DEestimationPar(fobj,lowPar,uppPar,np,ng,f,cr)
% Mateo Velásquez-Giraldo (mvelas26@eafit.edu.co)
% Universidad EAFIT, Medellı́n, Colombia.
% June 2015
% Tested with Matlab(R) R2013A.

% Parameters:

% -fobj: objective function which evaluates the "goodness" of a set of
% parameters. It will be MINIMIZED.
% -lowpar: vector with the lower bounds for the parameters in the
% initial population.
% -uppPar: vector with the upper bounds for the parameters in the
% initial population.
% -np: number of solutions in every population.
% -ng: number of generations to be simulated.
% -f: differential weight.
% -cr: crossover probability.

%% Create initial population
numpar = length(lowPar);
p1 = zeros(numpar,np);
for i = 1:numpar;

p1(i,:) = unifrnd(lowPar(i),uppPar(i),np,1);
end

% Keep objective functions in a vector
objP1 = zeros(1,np);
for i = 1:np

objP1(i) = fobj(p1(:,i));
end

%% Display:
disp(’Diferential evolution:’);
disp(’**’);
disp(’ Generation Best fobj S.D Obj’);
disp(’**’);

bestP1 = min(objP1);
info = [0,bestP1,std(objP1)];
disp(num2str(info));

%% Evolutive cycle

for k = 1:ng;
p0 = p1;
objP0 = objP1;

% Generate solutions

14

parfor i = 1:np
pU = zeros(numpar,1);
% Random selection of three solutions
samp = randsample([1:i-1,i+1:np],3);
% Differential step
pV = p0(:,samp(1))+f*(p0(:,samp(2))-p0(:,samp(3)));
% Crossing
R = randi(numpar);
for j = 1:numpar;

if rand < cr || j == R
pU(j) = pV(j);

else
pU(j) = p0(j,i);

end
end
% "Goodness" comparison with predecesor
objSon = fobj(pU(:));
if(objSon < objP0(i))

% If the new individual is better, it replaces its
% predecesor.
p1(:,i) = pU(:);
objP1(i) = objSon;

end
end
% Display iteration results
bestP1 = min(objP1);
variation = std(real(objP1));
info = [k,bestP1,variation];
disp(num2str(info));

end

%% Find the best solution in the final population
I = find(objP1==bestP1);
best = p1(:,I(1));
output = best;

end

	Introduction
	Methodology
	Data
	The loglikelihood function
	Estimation procedure

	Results
	Implementation
	Simulation tests
	Estimation with Colombian data

	Conclusions and further work
	Appendix A: Model specifications
	A0(1) model
	A1(1) model
	A0(2) model
	A1(2) model
	A2(2) model
	A0(3) model
	A1(3) model
	A2(3) model
	A3(3) model

	Appendix B: Differential evolution implementation in Matlab ®

