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Abstract

We present a methodology through exempli�cation to perform parameter estima-

tion subject to possible factors of uncertainty. The underlying optimization problem

is posed in the framework of the theory of interval-valued optimization. The imple-

mentation of numerical procedures required to achieve e�cient solutions implied the

use of the ℓ1 norm instead of usual ℓ2 regression. Finally, an implementation using

real data was performed, demonstrating the ability of interval analysis to encapsulate

uncertainty while facing non-trivial parameter estimation problems.

1 Introduction

The majority of mathematical models developed to represent various problems de-
pend on sets of parameters whose values are generally determined based on experimental
measurements or inferred according to data obtained through observation of the studied
phenomenon.

Given a set of experimental data {yi} (inaccurate because of the in�uence of randomness
and uncertainty), we would like to estimate the values of those parameters, so that the
model attains an acceptable �tting level to the observed data.

In the usual estimation techniques, a vector of real numbers is obtained (a single point
estimation for each of the parameters involved), which causes that the probability that the
result of the estimation happens to be the actual value of the parameter is fairly low and,
therefore, is very sensitive to perturbations [1].

Nevertheless, the use of interval-valued analysis allows us to provide regions in which,
given a determined con�dence level, we can ensure the enclosing of the solution, thus
reducing the impact of random disturbances and computational errors in the �nal result.

The foundations of interval analysis were established by Moore [1] in his PhD disser-
tation. Based on that work and further developments provided by Skelboe [2], Hansen
[3] and Stroem [4], among others, several authors (Ratschek and Voller [5], Bhurjee and
Panda [6]) have studied the potential of interval valued techniques in the �eld of optimiza-
tion. On the other hand, authors like Ichida and Fujii [7] or Karmakar and Bhunia[8] have
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developed signi�cant research related to the implementation of multiobjective techniques
including interval valued optimization. However, there is a lack of e�orts in the use of
these procedures in the context of parameter estimation which is one of the principal aims
of this research work.

Thus, the uncertainty in those values due to measurement errors, rounding in calcu-
lations, computational representability and even possibly because of a lack of knowledge
of qualitative information associated with those parameters, pose interval analysis and,
particularly, interval-valued optimization as a very useful tool, leading to the development
and establishment of robust techniques when facing the mentioned di�culties, obtaining
more reliable and rigorous results in a mathematical perspective.

A methodology to perform parameter estimation under any kind of uncertainty is pre-
sented. The underlying optimization problem is posed in the framework of the theory of
interval-valued optimization. Numerical results show that estimations obtained allow us to
describe successfully the behaviour of the modelled phenomenons by enclosing adequately
the uncertainty and sensitivity of the model, overcoming possible di�culties originated in
errors generated while measuring or modelling, even in cases with low information avail-
ability.

In particular, the �rst numerical example allowed us to compare the e�cacy of the
optimization algorithms using an adaptation of the ℓ1 norm in the interval system using
the Hausdor� metric, instead of usual ℓ2 regression, related to the Euclidean metric space.
Information related to normed spaces can be found in [9] and [10].

This paper is organized as follows. In Section 2 we introduce the main concepts of
interval arithmetic and analysis, in order to present a concise approach to this theory
for the reader. In Section 3, we review some theoretical results related to interval-valued
optimization. Finally, Section 4 presents the numerical results obtained for theoretical and
real applications of interval optimization techniques.

2 Interval Arithmetic and Analysis

With the aim of presenting a self contained article, this section describes in general
terms the notation, arithmetic and analytic components and some theorems related to
interval computation.

Let Kc(R) denote the set of all non-empty, compact and convex subsets of R. Let A,
B ∈ Kc(R) and let ⊙ ∈ {+,−, ·, /} be a binary operation on R, e.g., addition, subtraction,
multiplication and division.

Let us denote by I the class of all closed and bounded intervals in R. For an interval
A we adopt the notation A =

[
aL, aU

]
, where aL and aU mean the in�mum and supremum

of A, respectively. Throughout this paper, upper case non italic-letters represent intervals
and lower case non italic-letters represent real number. Whenever the context may not be
clear, proper comments shall be made.
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2.1 Set Operations

Since, intervals are essentially sets of real numbers, it is often useful to de�ne operations
related to their behaviour as sets.

De�nition 2.1. Let A and B ∈ I . The intersection of two intervals A and B is empty
if either bU < aL or aU < bL. Otherwise,

A ∩B := {x : x ∈ A ∧ x ∈ B} =
[
max

{
aL, bL

}
,min

{
aU , bU

}]

Figure 1: Intersection of intervals.

In particular, intersection plays a key role in interval analysis. If we have two intervals
containing a result of interest, regardless of how they were obtained, then the intersection,
which may be narrower (see Figure 1), also contains the result. Further set operations
between intervals are described in [1] and [11].

2.2 Interval Properties

Recalling the notation A =
[
aL, aU

]
, we can describe some of the main properties of

an interval in term of its endpoints, as can be seen in Figure 2.

Figure 2: Geometric properties of an interval.

De�nition 2.2. Let A ∈ I . We de�ne the length of A as

l(A) := aU − aL

De�nition 2.3. Let A ∈ I . The absolute value of A is de�ned by

|A| := max
{∣∣aL∣∣ , ∣∣aU ∣∣}
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De�nition 2.4. Let A ∈ I . The midpoint of A is given by

m(A) :=
aL + aU

2

2.3 Arithmetic Operations

Let A, B ∈ I . Let ⊙ ∈ {+,−, ·, /} be a binary operation on R, e.g., addition,
subtraction, multiplication and division. The operation A⊙B is de�ned by:

A⊙B := {a⊙ b : a ∈ A, b ∈ B}

For instance, for the case of the sum of two intervals, the set A + B can be explicitly
described in terms of the endpoints of such interval:

A+B =
[
aL + bL, aU + bU

]
The Hukuhara di�erence, ⊖, is a special kind of subtraction between two intervals [12],

particularly important for the de�nition of di�erentiation of interval-valued functions.

A⊖B =
[
aL − bL, aU − bU

]
provided aL − bL ≤ aU − bU

A complete list of endpoint formulas for the usual arithmetic operations and more
details on the topic of interval computation can be found in [1] and [11].

There is a close relation in the mathematical structure of I and R: for example, I
is commutative and associative under addition and multiplication, the cancellation law for
addition holds and there exist identity elements for such operations. However, we caution
that, for A ∈ I , −A is not in general an additive inverse for A, since

A−A = [aL, aU ] + [−aU ,−aL] =
[
aL − aU , aU − aL

]
= l(A) · [−1, 1]

Similarly, it can be proved that A/A = [1, 1] only of l(A) = 0. Therefore, we do not
have additive or multiplicative inverses except for degenerate intervals. However, we always
have the inclusions 0 ∈ A−A and 1 ∈ A/A [1].

Example 2.1. Consider the interval A = [1, 3]. It is straightforward to prove that A−A =
[−2, 2] = 2 · [−1, 1] ∋ 0 and A/A = [1/3, 1] ∋ 1.

Because of this lack of inverse elements under addition, I can not constitute a vector
space by itself. However, the work from Radstroem [13] develops the theory of an exten-
sion set via equivalence relations in which a commutative semigroup in which the law of
cancellation holds, as is indeed true in I , can be embedded in a vector space N where the
product λA for λ ≥ 0 coincides with the one given on I .

This allows us to ensure the existence of the family I m, which represents the set
of m-dimensional vectors with entries in I , as well as the natural extension to sets of
interval-valued matrices.
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2.4 Interval Analysis

In order to build an analytical structure on I it is fundamental to de�ne the notion
of a metric between intervals. Hausdor� [14] proposed a metric between subsets X and Y
of a metric space E, given by:

dH(X,Y ) = max

{
sup
x∈X

inf
y∈Y

∥x− y∥, sup
y∈Y

inf
x∈X

∥x− y∥

}

where ∥·∥ is the distance de�ned on the metric space (E, ∥·∥).
In particular, the Hausdor� norm induces a metric for the interval system that can be

expressed in terms of the midpoints of the selected intervals A = [aL, aU ], B = [bL, bU ], as
follows:

dH(A,B) = max
{
|aL − bL|, |aU − bU |

}
Given the metric space (I , dH(·)), it is possible to de�ne the usual notions of conver-

gence and limit in this space.

De�nition 2.5. Let {An} and A ∈ I . We say that the sequence of intervals {An}
converges to A, denoted by limn→∞An = A, if, for every ϵ > 0, there exists N ∈ N, such
that, for n ≥ N , we have dH(An, A) < ϵ.

Lemma 2.1. Convergence in I can be reduced to the usual convergence in R, that is,

lim
n→∞

An = A if and only if aLn → aL ∧ aUn → aU

2.4.1 Interval-valued Functions

De�nition 2.6. The function f : Rn → I de�ned on an Euclidean space Rn is called an
interval-valued function. This function can also be written as f(x) = [fL(x), fU (x)], where
fL and fU are real-valued functions de�ned on Rn and satisfy fL(x) ≤ fU (x) for every
x ∈ Rn.

This de�nition of interval-valued functions allows us to handle a wide range of situations
in which we can describe a function of this nature in terms of two real valued functions,
but also we could present a function whose parameters are intervals in I .

De�nition 2.7. For c ∈ Rn, we write limx→c f(x) = A if, for every ϵ > 0, there exists
δ > 0 such that, for ∥x − c∥ < δ, we have dH(f(x), A) < ϵ. In this case, we say A is the
limit of f when x tends to c.

Theorem 2.1. Let f be an interval-valued function de�ned on Rn and A = [aL, aU ] ∈ I .
Then limx→c f(x) = A if and only if limx→c f

L(x) = aL and limx→c f
U (x) = aU .

De�nition 2.8. Let f be an interval-valued function de�ned on Rn. We say that f is
continuous at c ∈ Rn if limx→c f(x) = f(c).

Further information regarding interval-valued functions, their properties, and proofs of
related theorems can be found in [15].
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3 Karush-Kuhn-Tucker Optimality Conditions

3.1 Order Relations

Since, in the context of optimization its is necessary to compare the images of interval-
valued functions to be minimized (maximized), a corresponding group of partial order
relations can be de�ned for intervals. These relations are illustrated in Figures 3 - 5.

De�nition 3.1. Let A = [aL, aU ] and B = [bL, bU ] ∈ I . It is possible to express A as a
function of its centre and width, as A = ⟨m(A), w(A)⟩.

• A ≼LU B if and only if aL ≤ bL and aU ≤ bU

• A ≼UC B if and only if aU ≤ bU and m(A) ≤ m(B)

• A ≼CW B if and only if m(A) ≤ m(B) and w(A) ≤ w(B)

Figure 3: Order relations � ≼LU .

Figure 4: Order relations � ≼UC .

Figure 5: Order relations � ≼CW .

In the minimization case, the ≼CW order is particularly interesting because it allows
us to obtain the interval with the minimum midpoint and also the smaller width, which in
this case can be seen as the variance or uncertainty in the measurement or evaluation of
the function.
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3.2 Di�erentiability

Di�erentiation is one of the key concepts in optimization. because the qualities of the
derivatives of a function provide very relevant information related to minima and extrema
values of this function.

The extension of di�erentiability to interval-valued function is based on the Hukuhara
di�erence presented in Section 2.3 and, under certain conditions, keeps a very strong re-
lation to usual real-valued functions derivatives, establishing a connection between De�ni-
tions 3.2 and 3.3.

De�nition 3.2. Let X be an open set in R. An interval-valued function f : X → I with
f(x) = [fL(x), fU (x)] is called weakly di�erentiable at x0 ∈ X if the real valued functions
fL and fU are di�erentiable at x0 (in the usual sense).

De�nition 3.3. Let X be an open set in R. We say f : X → I is H-di�erentiable
(strongly di�erentiable) at x0 ∈ X if there exists A(x0) ∈ I such that

lim
h→0+

f(x0 + h)⊖ f(x0)

h
and lim

h→0+

f(x0)⊖ f(x0 − h)

h

both exist and are equal at A(x0). Then A(x0) is the H-derivative of f at x0.

The following theorem presents the conditions in which a function is (or not) H-
di�erentiable at a point.

Theorem 3.1. (Wu [15]) Let X be an open set in R and f : X → I an interval-valued
function de�ned on X. Suppose that f is weakly di�erentiable at x0 ∈ X with derivatives

(fL)′(x0) = âL(x0) and (fU )′(x0) = âU (x0). Then,

1. If fL(x0 + h)− fL(x0) ≤ fU (x0 + h)− fU (x0) and fL(x0)− fL(x0 − h) ≤ fU (x0)−
fU (x0−h) for every h > 0, then f is H-di�erentiable at x0 with H-derivative A(x0) =

[âL(x0), âU (x0)].

2. If âU (x0) > âL(x0), then f is H-non-di�erentiable at x0.

Based on Theorem 3.1, the next corollary is an immediate consequence given the de�ni-

tion of âL(x0) and âU (x0), and summarizes the concept of di�erentiability of interval-valued
functions.

Corollary 3.1. Let X be an open set in R. If an interval-valued function f : X → I is H-
di�erentiable (strongly di�erentiable) at x0 ∈ X with H-derivative A(x0) = [aL(x0), a

U (x0)],
then f is weakly di�erentiable at x0. Furthermore, we have (fL)′(x0) = aL(x0) and
(fU )′(x0) = aU (x0).

3.3 KKT Optimality Conditions

In optimization, the Karush-Kuhn-Tucker (KKT) conditions are �rst order necessary
conditions for a solution in non-linear programming to be optimal, provided that some
regularity conditions are satis�ed [16]. The conditions derived in [15] allow us to determine
the optimality of a feasible solution of an interval valued optimization problem.
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De�nition 3.4. Let f(x) = [fL(x), fU (x)] be an interval-valued function de�ned on a
convex set X ⊆ Rn. We say that f is LU-convex at x∗ ∈ X if

f(λx∗ + (1− λ)x) ≺LU λf(x∗) + (1− λ)f(x)

for each λ ∈ (0, 1) and each x ∈ X. It is possible to de�ne UC-convexity in a similar
fashion.

Remark 3.1. Let X be a convex subset of Rn and f be an interval-valued function de�ned
on X. The function f is LU-convex at x∗ ∈ X if and only if fL and fU are convex (in the
usual sense) at x∗ ∈ X.

De�nition 3.5. Let x∗ be a feasible solution, i.e., x∗ ∈ X. We say that x∗ is a type-
I solution [type-II solution] of an interval-valued optimization problem if there exists no
x ∈ X such that f(x) ≺LU f(x∗) [or f(x) ≺CW f(x∗)].

Theorem 3.2. (Wu [15]) Consider the interval valued optimization problem (IVOP)
given by

min f(x) = [fL(x1, ..., xn), f
U (x1, ..., xn)] = [fL(x), fU (x)]

subject to gi(x) ≤ 0

where the real-valued constraint functions gi : Rn → R are convex on Rn for i = 1, ...,m.
Suppose that the interval-valued objective function f : Rn → I is LU-convex and

weakly continuously di�erentiable at x∗ ∈ Rn. If there exist (Lagrange) multipliers 0 <
λL, λU ∈ R and 0 ≤ µi ∈ R, i = 1, ...,m, such that

1. λL∇fL(x∗) + λU∇fU (x∗) +
∑m

i=1 µi∇gi(x∗) = 0 and

2. µigi(x∗) = 0 for all i = 1, ...,m

then x∗ is a type-I and type-II, i.e. optimal under the selected order relation, solution
of (IVOP) problem.

Remark 3.2. Note the existent resemblance between Theorem 3.2 an the usual KKT con-
ditions for real-valued optimization, which is indeed equivalent to the last theorem removing
the bold-face conditions.

Remark 3.3. The selected Lagrange multipliers λL, λU ∈ R act as coe�cients of a weighted
sum applied to the components of the objective function f , thus reducing the dimensionality
of the problem.

4 Parameter Estimation using Interval-Valued Optimization

4.1 Generalized Polynomial Fitting

Let ci = [cLi , c
U
i ] ∈ I for i ∈ N. We say p(x) is an interval-valued polynomial if it can

be expressed in the form

p(x) =

n∑
i=0

ci · xi =
n∑

i=0

[cLi , c
U
i ] · xi
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Consider a set of observations yi = [yLi , y
U
i ] ∈ I for i ∈ {1, ...,m}. We can model this

phenomenon using a n degree polynomial in a matrix form as follows:

 y1
...
ym

 =


1 x1 x21 · · · xn1
1 x2 x22 · · · xn2
...

...
...

. . .
...

1 xm x2m · · · xnm


c0...
cn

+

ε0...
εn


Y = VC + E

where V is called the Vandermonde matrix.

Figure 6: Interval-valued polynomial graphic.

A polynomial of degree 10 with random valued interval coe�cients was generated and
a random sample, purple intervals, was extracted, see Figure 6. With this information, the
goal was to estimate the original values of the coe�cients that generated this behaviour.

As it is usual in parameter estimation, and even more in polynomial �tting, because
of its desirable computational speed and simplicity, our �rst attempt to achieve that goal
was to perform an ordinary least square (OLS) estimation, in which the coe�cients of a
real-valued polynomial given real observations can be estimated by:

Y = VC ⇒ Ĉ =
(
VTV

)−1
VTY

This result can be obtain by minimizing the ℓ2-norm of the residuals between the
midpoints of �tted model and the real measurements.

min
m∑
i=1

[m(yi)−m(ŷi)]
2

Nevertheless this results provides good results in term of an unbiased estimation of the
midpoints of the coe�cients of the polynomial, there can exist very high overestimations
in the length of the interval (see Figure 7) thus not allowing the identi�cation of the real
sensitivity of each parameter in the model.
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Figure 7: Parameter estimation result using OLS.

In Figure 7, the red bars represent the real values of the parameters, while the gray
bars illustrate the value of the estimated coe�cient. A good estimation should, of course,
show little discrepancies between the gray and red bars for every coe�cient, achieving an
enclosure of the parameter, thus being unbiased in midpoint and length.

With the aim of reducing the mentioned di�culties, an heuristic di�erential evolution
algorithm was implemented. Di�erential Evolution (DE) was developed originally by Price
[17] while trying to solve a Chebychev polynomial �tting problem proposed by Storn. A
complete description of DE can be found in [17].

The fundamental idea behind DE is the generation of vector through linear combina-
tions of elements in the current population. Then, given an individual in the population,
this element is compared with the trial vector generated via linear combination and, if the
trial element has a better performance in terms of the objective function to be minimized
(maximized), a crossing in the components of the original vector is made under a de�ned
probability level.

Figure 8: Parameter estimation result using Di�erential Evolution.
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The estimations obtained using the heuristic search are presented in Figure 8. There
is an improvement in the quality of the estimation according to the magnitude of the
estimations in relation with the real values of the parameters. In most of the estimations
there is an almost unbiased estimation in the midpoint of the intervals. However, some of
the coe�cients are underestimated or overestimated in the length of the interval, as can
be seen in coe�cients 7 and 8. Additionally, given the nature of the heuristic, the quality
of the estimations is not very uniform and in some cases, the search does not converge to
adequate values of the parameters.

As another alternative, we used the software implementation cvx for convex optimiza-
tion developed in [18] [19]. To avoid the overestimation of the interval length, the metric
induced in I by the ℓ1 norm was used to measure the residuals, which can be expressed in
terms of the Hausdor� distance in I . In this way the optimization problem can be stated
as follows

min

m∑
i=1

dH (yi, ŷi)

Given the de�nition of this metric, at an optimal point we can ensure an unbiased
estimation of both endpoints, which is equivalent to a lack of midpoint-length bias.

Figure 9: Parameter estimation result using CVX .

The results of this methodology are presented in Figure 9. As can be seen, the estima-
tions agree successfully with the real values of the parameters, with errors of magnitude
10−9 in relation to the theoretical endpoints. Thus, allowing us to model closely the ob-
served behaviour using an interval-valued polynomial model and enclosing the possible
uncertainty in the problem.

4.2 Weierstrass Function

In order to evaluate the feasibility of an estimation of the parameters of a model using
real data, the used techniques were tested using data sampled from a Weierstrass function,
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which is an example of a pathological real-valued function on the real line [20], given by

f(x) =

∞∑
n=0

an cos (bnπx)

In this case, the objective was to extract information about the value of the coe�cient
a, in this case treated as an interval, based on a set of measurements for x ∈ [0, 1], using
the ℓ1 induced metric in I to de�ne the optimization problem, as shown previously. To
favour the clarity of the graphic, the estimated behaviour of the model and a subset of the
measurements is presented in the interval [0, 0.125].

Figure 10: Weierstrass function model.

As we can see in Figure 10, the estimated coe�cient for this model is able to handle the
chaotic and noisy behaviour of this function, and also the extreme sensitivity that exists
in this parameter, which generates changes of a large magnitude and form of the images
of the function when small changes are applied to the value of a, for whom the estimation
was very exact.

4.3 Fourier Series Applied to the Modelling of Spectral Power Densities

Using hydrophones, measurements of the spectral power density of the sound signals
generated by vessels were performed in order to develop a characterization of such crafts. In
total 36 measurements were performed, however 12 of those were discarded due to factors
that generated changes in behaviour of the spectrum, for example, changes in the speed
of the boat and its engines. The 24 accepted measurements are presented in Figure 11,
where the horizontal axis represents the frequency in Hz and the vertical axis the spectral
power density in dB/Hz. Because of con�dentiality issues, the source of this data cannot
be speci�ed.

In order to describe this behaviour a Fourier series model was proposed. A Fourier series
is a way to represent a wave-like function as the sum of simple sine waves, decomposing
the signal into the sum of a (possibly in�nite) set of simple oscillating functions, namely
sines and cosines, as follows:

f(x) = a0 +

n∑
i=1

ai cos (iwx) + bi sin (iwx)
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where a0 models a constant (intercept) term in the data and is associated with the i =
0 cosine term, w is the fundamental frequency of the signal, n is the number of terms
(harmonics) in the series. In this case, several order models were estimated, however, an 8
order model followed the trends observed in the measurements in a much more adequate
way, especially in the initial and �nal parts of the data.

Figure 11: Real measurements - Level as a function of frequency.

Based on the complete set of measurements, the upper and lower bounds in each instant
were extracted and, with this (reduced) information, the coe�cients for the model of each
of the bounding trajectories were estimated, obtaining the �ts presented in Figures 12 and
13.

Figure 12: Fitted model lower bound. Figure 13: Fitted model upper bound.

Using these estimations an interval-valued function was proposed to enclose the volatil-
ity of the measurements using Fourier series to describe the lower and upper functions, i.e.
f : R → I , given by f(x) =

[
fL(x), fU (x)

]
, where the bounding functions can be ex-

pressed by:

fL(x) = aL0 +

n∑
i=1

aLi cos
(
iwLx

)
+ bLi sin

(
iwLx

)
13



fU (x) = aU0 +

n∑
i=1

aUi cos
(
iwUx

)
+ bUi sin

(
iwUx

)
An interval-valued plot generated from this model is presented in Figure 14. As can be

seen in Figure 11, in which the black bold line represent the estimated bounding functions
of the model, who is able to describe a signi�cant proportion of the variance present in the
measurements performed.

Figure 14: Interval-valued plot of the estimated Fourier series model.

It is remarkable that the e�ectively used information was related only to the maximum-
minimum measurements in every instant. Therefore, the quality of the estimations ob-
tained could have been equally as good as the presented in a situation of scarce available
information. It is also possible to perceive a reduction in noise of the signals provided by the
model, which is important in order to approximate the local behaviour of the phenomenon.
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