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1 Introduction

The combinatorial optimization problems as the distribution of goods, have a lot
of applications in the industry, commerce and other activities. The importance
of studying the distribution of goods is considerable. This paper is dedicated
to the k-Traveling Repairman Problem (k-TRP), a vehicle routing problem in
which a fleet of vehicles must visit a set of demand nodes. This problem is
part of the current state of the art in areas like the operations research, applied
mathematics and combinatorial optimization, and it has applications in several
contexts as distribution with service-based factors, humanitarian logistics and
green logistics. The ideal scenario is to handle this type of problems using inte-
ger linear programming models. However, because of their complexity and the
size of the real problems, this kind of problems are usually solved by heuristic
and metaheuristic methods.

In this paper, the design, experimentation, and analysis of a metaheuristic
algorithm to solve the k-TRP is performed. The k-TRP is a variant of the
traveling salesman problem (TSP) in which the cost-based classical objective
function becomes the weighted sum of completion times at sites and k agents
or vehicles cover one of k routes. The k-TRP is an optimization problem where
k dealers, needs to schedule their visitation order to a set of customers, taking
into account that each customer has a level of priority. In our implementation
those priorities correspond to their demands . A solution is given by a schedule
of the visits for each agent k, trying to find the set of least costly routes.

Taking into account that the TRP is an NP-Hard problem (Sahni & Gon-
zalez, 1974), and the k-TRP version studied in this paper generalizes TRP by
including several agents and weights for each node, it can be concluded that our
problem is also NP-Hard. Therefore, it is necessary to use heuristic or meta-



heuristic methods to solve this problem in practical cases. In our study, the
proposed metaheuristic is a Multi Start Iterative Local Search (MS-ILS), being
this algorithm the most important contribution of this paper.

2 State of the Art

The multiple TRP (k-TRP) is a generelization for the TRP, where k routes
must be determined, Jothi & Raghavachari (2007) and Fakcharoenphol et al.
(2003) provide algorithms for approximation of this problem.

As it is described in Luo et al. (2014), the TRP has been extensively studied
by a large number of researchers. This problem is also known as the travelling
delivery problem (TDP) and the minimum latency problem (MLP) for their
applications in different contexts. Some of the most recent researches of the
TRP can be find in Jothi & Raghavachari (2007); Dewilde et al. (2013); Bock
(2015), for the MLP the most recent researches are Wu et al. (2004); Silva et al.
(2012); Angel-Bello et al. (2013); Lam et al. (2015) and for the TDP the latest
research are Méndez-Diaz et al. (2008); Bjeli¢ et al. (2013); Luo et al. (2014)

Multiple variations of the TRP are presented in the literature, including
special constraints or features for activities or resources. For instance, the ac-
tivities (j € V) can include delivery limit time d; (Polat et al. , 2015) or release
times (Yu & Liu, 2009), and the resources (k), can consider limited capacity
Q@ (Contardo & Martinelli, 2014) or congestion charge (Wen & Eglese, 2015).

3 Problem Definition and Mixed Integer Linear
Model Formulation

Given a set of J = (0,1, ...,n,n+1) of n+2 customers and a set R = (1,2, ..., k)
of k repairmen, each customer j € J must be assigned to a repairmen such
that all the customers are performed by one repairmen. The repairmen cannot
process customers simultaneously and the weighted sum of completion times at
customers must be minimized. The customers 0 and n+ 1 respectively represent
the depot and the end point of the distribution process.

The goal is to find the order of customers visit order that minimize the pro-
posed objective function. In this case, the objective function is the weighted
sum of completion times. This problem can be mathematically formulated by
the following Mixed Integer Linear Program (MILP):
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The binary decision variables z;; indicate if the customer 7 is executed im-
mediately after the customer j, and the decision variables ¢; indicate the end
time of the customer j; s;; represents travel time between the customer ¢ and
customer j and p; is the time to process the customer j, T' is the required time
for plan, design and complete the activities. All the s;; and p; values are as-
sumed positives.

Equation (1) represents the objective function which minimize the weighted
sum of completion times, the weights given by w; can be interpreted as the
importance of the customer ¢. Equations (2) and (3) indicate that each cus-
tomer must be made exactly once, and each customer is scheduled before and
after another customer, respectively. Equation (4) limits the repairmen and the
Equation (5) restricted the completion time of each customer. Finally, Equa-
tions (6) and (7) define the decision variables domain.

4 Multi-Start Iterative Local Search Algorithm

The Multi-Start Iterative Local Search (MS-ILS) is an iterative approach in
which every iteration perform an ILS metaheuristic which starts with a random
initial solution and improves that solution by a process which include pertur-
bation and local search procedures. The initial solutions is first enhanced by
a local search heuristic. After that, an iterative process is started in which
the resulting solution is disturbed several times and each perturbed solution is
improved again by the local search heuristic. Each ILS iteration is over when
the local search heuristic does not find any improvement, and them the best



solution found is saved. Before the generation of a new initial solution, the best
global solution is updated and returned at the end of the search process.

The MS-ILS is described by the following pseudo-code:

Algorithm 1 Pseudo-code of the proposed MS-ILS
Read (data, starts, perturbations)
Z(bestSol) = oo
for starts do

initial Sol = Constructive()
Precomputations(initialSol)
sol = LS (initialSol)
for perturbations do
pertSol = Pert(sol)
newSol = LS (pertSol)
if Z(newSol) < Z(sol) then
sol = newSol
end if
end for
if Z(sol) < Z(bestSol) then
bestSol = sol
end if
end for
return bestSol

4.1 Initial solution

The construction of the initial solution is based on the nearest neighbor strategy.
At the depot, the algorithm chooses the k closest customers. Each one of the
k customers is assigned to a random vehicle as the first visited customer. Then
the algorithm randomly assigns to each vehicle one of the two nearest customers
from the last visited.

4.2 Precomputations

After an initial solution is obtained, the procedure Precumputations is per-
formed to speed up the computation of the cost change by the subsequent local
moves in the local search heuristic. This precomputations works as follows:

For each sequence of visited customers o = (1,2,...,|o|), it is possible to
define the values W,, D, and C, as the sum of weights, the total duration
and the total cost or weighted sum of compeltion times of the sequence o.
Respectively these three values can be computed by Equations (8) to (10).
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The concatenation operator @ allows to compute the sum of weights, the
total duration and the total cost of the sequence resulting from the combination
of two sequences in order. This concatenation operator is based on Silva et al.
(2012), who defined a concatenation operator for the sum of completion times
objective function. Here we modified the operator of Silva et al. to be applied
to the weighted sum of completion times.

Suppose there exist two sequences A = (1,2,3) and B = (4,5). The sum
of weights, the total duration and the total cost of sequences A and B are
respectively, Wy = wy + ws + w3, Wp = wy + ws, Da = dio + daz, Dp = das,
Ca = dia- (watws)+dag-ws and Cp = dys-ws. The concatenation of sequences
A and B is defined as A® B = (1,2,3,4,5), and Wagp, Dagn, Capp can be
computed by the following equations:

Wagp = Wa+Wg (11)
Dygp = Dp+dzs+Dp (12)
Cagp = Ca+Wp-(Da+dss)+Ch (13)

As every route in a solution is in fact a sequence of customers, the values
of W, D and C for every sequence that can be extracted from a solution X
are precomputed to speed up the metaheuristic. In practice we don’t need to
compute these values for all possible sequences. For each visited customer ¢ € V'
by a route ¢ we precompute the arrays Wl, D, and C; which correspond to the
W, D and C values for the sequence (o1, ...,0;). The values for each sequence
starting and finishing in the customers in positions g and h of o, & = (ay, ..., op),
can be deduced in O(1) from Equations (11) to (13) as follows:

Ws = W,—-W, (14)
D& = Dh ﬁ dg 1,9 (15)
Cs = Chn—Cy—Ws-(Dyg+dy_1,4) (16)



4.3 Local Search

The local search uses unitary moves. This means that the algorithm evalu-
ate moves which exchange one customer from a route k; with another one of
a route kg. The best improvement strategy is applied, that means when all
possible changes are evaluated, the move with the best improvement is applied.
The algorithm starts with the first customer of the first vehicle and evaluates if
there is a possible exchange with another customer that improves the objective
function. Notice there is not a restriction in the vehicles k1 and ks, therefore,
the moves can involve the same vehicle (k1 = ks).

4.4 Perturbation

In order to explore other solutions and diversify the search space, the algorithm
includes a perturbation procedure that consists in changing a random number of
customers between two random chosen vehicles. The length of each exchanged
sequence m is chosen by random. The sequence is selected such as it corresponds
to the first m customers or the last m customer visited by the vehicles.

5 Computational Experiments

For the performance assessment of the MS-LS, seven instances of Christofides
et al. (1979) for the capacitated VRP are used. The instances vary the number
of customers and the repairmen as illustrated in Table 1.

Table 1: Instances set features

Instance ‘ 1 2 3 4 5 11 12
repairmen | 5 10 8 12 17 7 10
customers | 50 75 100 150 199 120 100

Before the execution of the MS-ILS for all the instances, it is necessary to
define the number of starts and the number of perturbations that the meta-
heuristic must execute. Therefore, it is performed an experimentation over the
first instance with different values for both parameters. The results are de-
scribed in Table 2.



Table 2: Computational experiments with different parameter values

'Type of Starts  Pert Im’tial' objective  Best gbjective Improvement Runmng
instance function value  function value time (sec)
1 1 9999 3.82x1074 3,34x1074 4,81x10"3 660
1 2 499 4,35x1074 3,35x10°4 1x10°4 593
1 5 199 4,08x10"4 3,31x10"4 7,64x10°3 610
1 10 99 4,11x1074 3,39x10°4 7,2x10°3 684

Note that the times that the local search is applied is always the same (1000),
so this results are used to determine that the best combinations of parameters
is 5 starts with 199 perturbations and 2 starts with 499 perturbations. The
criteria to choose those values are the best objective function values and the
improvement when compared with initial solution objective function value. The
idea with these combinations is to explore two scenarios: the first one with
multiple initial solutions and the second one focused in the perturbations. Now,
the obtained results with the seven instances are depicted in Tables 3 and 4.

Table 3: Results for seven instances with 5 starts and 199 perturbations

'Type of Starts  Pert Initial objective Best obj'ective Improvement Runnmg
instance function function time (sec)
1 5 199 4.1x10°4 3,35x10°4 7,52x10°3 590
2 5 199 5,16x10"4 4,3x10"4 8,57x10°3 1372
3 5 199 7,52x10°4 5,85x10°4 1,67x10"3 2952
4 5 199 1,03x10°5 8,09x10°3 2,22x10°4 6954
5 5 199 1,24x10°5 9,7x10°4 2,69x107°4 13268
6 5 199 1,57x10°5 6,04x10°4 9,69x10°4 9375
7 5 199 1,07x10°5 6,56x10°4 4,17x1074 3174

Table 4: Results for seven instances with 2 starts and 499 perturbations

AType of Starts  Pert Initial objective Best objlcctivc Tmprovement Running
instance function function time (sec)
1 2 499 4.33x10°4 3,23x10°4 1,1x1074 581
2 2 499 5,46x10°4 4,21x1074 1,25x1074 1136
3 2 499 7,07x10°4 6,15x10"4 9,25x10°3 2594
4 2 499 9,34x10°4 7,69x10°4 1,65x107°4 6639
5 2 499 1,14x10°5 9,37x10°4 2,03x10°4 10.207
6 2 499 1,3x10"5 6,64x10"4 6,34x10°4 7172
7 2 499 1,27x10°5 6,48x10°4 6,18x10°4 2480

Figure 1 illustrates how is the change in the initial solution when a number
of local search iterations are applied for the first instance of the set. The first
point in the figure is the cost of the initial solution.
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Figure 1: Improvement for different number of local search iterations

Figure 2 illustrates the metaheuristic elapsed times when different number
of perturbations are applied. As in Figure 1, the instance used is the first one
of the benchmark set. This figure shows a polynomial behaviour respect to the
number of perturbations.
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Figure 2: Running time for different number of perturbations

6 Conclusions and Further Work

Although the MS-LS is not compared with other heuristics, its performance
seems to be good for solving vehicle routing problems because the improvements
are relevant compared with the initial solution quality.



The obtained results are not determinant about the parameters behaviour.
For instances 1,2, 3 and 7, the scenario with more initial solutions obtains better
improvements. But for instances 4 to 6, the other scenario is better. To conclude
if some of the parameters are more important is necessary to test more instances.

The running time of the heuristic seems to follow a lineal behavior. As it
was expected, the problems with more repairmen and nodes, require more time
to get the solutions. Note that although the number of LS applied are the same,
the solution with 5 starts needs more time than the solution with 2 starts. It
is explained because the first Local search that the algorithm executes after
the initial solution requires more time because is when more changes are done
in general. Local search procedures performed after perturbations require less
computational effort to find an local optima solution.

Taking into account that parallel machine scheduling problems have the same
mathematical formulation of the TRP (Joo & Kim, 2015), as further work, it
is proposed to apply the MS-ILS to solve parallel machine scheduling problems.
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