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Some Definitions I

Agda is a proof assistant. It is an interactive system for
writing and checking proofs. Agda is also a functional lan-
guage with dependent types.1

A dependent type is a type that depends on elements of
other types.2

“Automated Theorem Proving (ATP) deals with the de-
velopment of computer programs that show that some state-
ment (the conjecture) is a logical consequence of a set of
statements (the axioms).”3

1(Bove, Dybjer & Norell, 2009), “A Brief Introduction of Agda – A
Functional Language with Dependent Types”.

2(Bove & Dybjer, 2009), “Dependent Types at Work”.
3(Sutcliffe, Zimmer & Schulz, 2004), “TSTP Data-Exchange Formats for

Automated Theorem Proving Tools”.
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Some Definitions II

TPTP is a language understood by most of the ATPs.

TSTP is a language for writing the proofs performed by the
ATPs.

Apia is a program (developed by Prof. Sicard-Ramı́rez) that
performs the translation of an Agda representation of FOL
formula into TPTP.4

4(Sicard-Ramı́rez, 2015), “Reasoning about Functional Programs by
Combining Interactive and Automatic Proofs”.
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Problem Definition

In this moment:
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Problem Definition

What we want:
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Goal

The TPTP library has provided the community with standards
for input and output for ATPs.5 However, it does not exist a
standard for the way the proof is printed, which make it diffi-
cult to try to do a program to reconstruct the proofs for all of
the ATPs. For this reason, we decided to focus our efforts in
formulating the demonstration in Agda just for one ATP.

5(Sutcliffe, 2009), “The TPTP Problem Library and Associated
Infrastructure: The FOF and CNF Parts”.
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State of the Art

SMTCoq is a Coq tool that checks proof witnesses coming
from external SAT and SMT solvers.6

Sledgehammer is a component of the Isabelle/HOL proof
assistant that integrates external ATPs to discharge interac-
tive proof obligations. Something impressive is that Sledge-
hammer transforms the proofs by contradiction into direct
proofs.7

Foster and Struth integrated the Waldmeister ATP to Agda.8

6(Armand, Faure, Grégoire, Keller, Théry & Werner, 2011), “A Modular
Integration of SAT/SMT Solvers to Coq through Proof Witnesses”.

7(Blanchette, Bohme, Fleury, Smolka & Steckermeier, 2015),
“Semi-intelligible Isar Proofs from Machine Generated Proofs”.

8(Foster & Struth, 2011), “Integrating an Automated Theorem Prover
into Agda”.
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Work Done

Before starting with the reconstruction of the proofs, it was nec-
essary to focus on the prerequisites:

Haskell

Agda

The ATP
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Haskell
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Example9

Parsing an IP address in Haskell

data IP = IP Word8 Word8 Word8 Word8

parseIP :: Parser IP

parseIP = do

d1 <- decimal

char ’.’

d2 <- decimal

char ’.’

d3 <- decimal

char ’.’

d4 <- decimal

return ( IP d1 d2 d3 d4 )

9https://www.fpcomplete.com/school/starting-with-haskell/

libraries-and-frameworks/text-manipulation/attoparsec

https://www.fpcomplete.com/school/starting-with-haskell/libraries-and-frameworks/text-manipulation/attoparsec
https://www.fpcomplete.com/school/starting-with-haskell/libraries-and-frameworks/text-manipulation/attoparsec
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Agda10

10(Bove & Dybjer, 2009), “Dependent Types at Work”.
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Example11

Natural numbers in Agda

data Nat : Set where

zero : Nat

succ : Nat -> Nat

Equality between Natural numbers in Agda

_==_ : Nat -> Nat -> Bool

zero == zero = true

zero == succ n = false

succ n == zero = false

succ n == succ m = n == m

11(Bove & Dybjer, 2009), “Dependent Types at Work”.
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ATP
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Example

Proof of the Modus Ponens Principle in E

fof(c_0_7, plain, ((~a|b)), inference(fof_nnf,[status(thm)],

[c_0_4])).

cnf(c_0_10,plain,(b|~a), inference(split_conjunct, [status(thm)],

[c_0_7])).

cnf(c_0_13,plain,(b|~a), c_0_10).

cnf(c_0_14,plain,(a), c_0_11).

cnf(c_0_16,plain,(b), inference(cn,[status(thm)],[inference(rw,

[status(thm)],[c_0_13, c_0_14, theory(equality)]),

theory(equality,[symmetry])])).
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Work in Progress

Currently, we are testing the behavior of the parser from TSTP
into Agda, developed by Gómez-Londoño.12 Its performance is
being verified with basic E proofs.

12https://github.com/agomezl/tstp2agda

https://github.com/agomezl/tstp2agda
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Example

Parsing the Proof of the Modus Ponens Principle

F {name = "c_0_0", role = Axiom, formula = PredApp (AtomicWord "a") [],

source = File "modusPonens.tptp" (Just "a")}

F {name = "c_0_3", role = Axiom, formula = PredApp (AtomicWord "a") [],

source = Name "c_0_0"}

F {name = "c_0_5", role = Axiom, formula = PredApp (AtomicWord "a") [],

source = Name "c_0_3"}
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Thanks for your attention!
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