Proof Reconstruction: Parsing Proofs
Project Presentation

Diego Alejandro Montoya-Zapata
dmonto39@eafit.edu.co

Advisor - Andrés Sicard-Ramirez
asr@eafit.edu.co

EAFIT University

June 9th, 2015

Introduction

Some Definitions I

o Agda is a proof assistant. It is an interactive system for
writing and checking proofs. Agda is also a functional lan-
guage with dependent types.!

!(Bove, Dybjer & Norell, 2009), “A Brief Introduction of Agda — A
Functional Language with Dependent Types”.

2(Bove & Dybjer, 2009), “Dependent Types at Work”.

3(Sutcliffe, Zimmer & Schulz, 2004), “TSTP Data-Exchange Formats for
Automated Theorem Proving Tools”.

Introduction

Some Definitions I

o Agda is a proof assistant. It is an interactive system for
writing and checking proofs. Agda is also a functional lan-
guage with dependent types.!

o A dependent type is a type that depends on elements of
other types.?

!(Bove, Dybjer & Norell, 2009), “A Brief Introduction of Agda — A
Functional Language with Dependent Types”.

2(Bove & Dybjer, 2009), “Dependent Types at Work”.

3(Sutcliffe, Zimmer & Schulz, 2004), “TSTP Data-Exchange Formats for
Automated Theorem Proving Tools”.

Introduction

Some Definitions I

o Agda is a proof assistant. It is an interactive system for
writing and checking proofs. Agda is also a functional lan-
guage with dependent types.!

o A dependent type is a type that depends on elements of
other types.?

e “Automated Theorem Proving (ATP) deals with the de-
velopment of computer programs that show that some state-

ment (the conjecture) is a logical consequence of a set of
statements (the axioms).”?

!(Bove, Dybjer & Norell, 2009), “A Brief Introduction of Agda — A
Functional Language with Dependent Types”.

2(Bove & Dybjer, 2009), “Dependent Types at Work”.

3(Sutcliffe, Zimmer & Schulz, 2004), “TSTP Data-Exchange Formats for
Automated Theorem Proving Tools”.

Introduction

Some Definitions 11

o TPTP is a language understood by most of the ATPs.

4(Sicard-Ramirez, 2015), “Reasoning about Functional Programs by
Combining Interactive and Automatic Proofs”.

Introduction

Some Definitions 11

o TPTP is a language understood by most of the ATPs.

o TSTP is a language for writing the proofs performed by the
ATPs.

4(Sicard-Ramirez, 2015), “Reasoning about Functional Programs by
Combining Interactive and Automatic Proofs”.

Introduction

Some Definitions 11

o TPTP is a language understood by most of the ATPs.

o TSTP is a language for writing the proofs performed by the
ATPs.

e Apia is a program (developed by Prof. Sicard-Ramirez) that

performs the translation of an Agda representation of FOL
formula into TPTP.4

4(Sicard-Ramirez, 2015), “Reasoning about Functional Programs by
Combining Interactive and Automatic Proofs”.

Introduction

Problem Definition

In this moment:

Translation

Introduction

Problem Definition

What we want:

Translation

N

Agda ATPs

) 4

Proof
Reconstrunction

Introduction

Goal

The TPTP library has provided the community with standards
for input and output for ATPs.® However, it does not exist a
standard for the way the proof is printed, which make it diffi-
cult to try to do a program to reconstruct the proofs for all of
the ATPs. For this reason, we decided to focus our efforts in
formulating the demonstration in Agda just for one ATP.

®(Sutcliffe, 2009), “The TPTP Problem Library and Associated
Infrastructure: The FOF and CNF Parts”.

Introduction

State of the Art

e SMTCoq is a Coq tool that checks proof witnesses coming
from external SAT and SMT solvers.5

5(Armand, Faure, Grégoire, Keller, Théry & Werner, 2011), “A Modular
Integration of SAT/SMT Solvers to Coq through Proof Witnesses”.

"(Blanchette, Bohme, Fleury, Smolka & Steckermeier, 2015),
“Semi-intelligible Isar Proofs from Machine Generated Proofs”.

8(Foster & Struth, 2011), “Integrating an Automated Theorem Prover
into Agda”.

Introduction

State of the Art

e SMTCoq is a Coq tool that checks proof witnesses coming
from external SAT and SMT solvers.5

e Sledgehammer is a component of the Isabelle/HOL proof
assistant that integrates external ATPs to discharge interac-
tive proof obligations. Something impressive is that Sledge-
hammer transforms the proofs by contradiction into direct
proofs.”

5(Armand, Faure, Grégoire, Keller, Théry & Werner, 2011), “A Modular
Integration of SAT/SMT Solvers to Coq through Proof Witnesses”.

"(Blanchette, Bohme, Fleury, Smolka & Steckermeier, 2015),
“Semi-intelligible Isar Proofs from Machine Generated Proofs”.

8(Foster & Struth, 2011), “Integrating an Automated Theorem Prover
into Agda”.

Introduction

State of the Art

e SMTCoq is a Coq tool that checks proof witnesses coming
from external SAT and SMT solvers.5

e Sledgehammer is a component of the Isabelle/HOL proof
assistant that integrates external ATPs to discharge interac-
tive proof obligations. Something impressive is that Sledge-
hammer transforms the proofs by contradiction into direct
proofs.”

o Foster and Struth integrated the Waldmeister ATP to Agda.®

5(Armand, Faure, Grégoire, Keller, Théry & Werner, 2011), “A Modular
Integration of SAT/SMT Solvers to Coq through Proof Witnesses”.

"(Blanchette, Bohme, Fleury, Smolka & Steckermeier, 2015),
“Semi-intelligible Isar Proofs from Machine Generated Proofs”.

8(Foster & Struth, 2011), “Integrating an Automated Theorem Prover
into Agda”.

‘Work Done

Work Done

Before starting with the reconstruction of the proofs, it was nec-
essary to focus on the prerequisites:

o Haskell

‘Work Done

Work Done

Before starting with the reconstruction of the proofs, it was nec-
essary to focus on the prerequisites:

o Haskell

o Agda

‘Work Done

Work Done

Before starting with the reconstruction of the proofs, it was nec-
essary to focus on the prerequisites:

o Haskell

o Agda

o The ATP

Haskell

HASKELL

Parser

‘Work Done

Example’

Parsing an IP address in Haskell

data IP = IP Word8 Word8 Word8 Word8
parselIP :: Parser IP
parselIP = do

dl <- decimal

char ’.°’

d2 <- decimal

char ’.°

d3 <- decimal

char ’.°

d4 <- decimal

return (IP d1 d2 d3 44)

Shttps://www.fpcomplete.com/school/starting-with-haskell/
libraries-and-frameworks/text-manipulation/attoparsec

https://www.fpcomplete.com/school/starting-with-haskell/libraries-and-frameworks/text-manipulation/attoparsec
https://www.fpcomplete.com/school/starting-with-haskell/libraries-and-frameworks/text-manipulation/attoparsec

Lecture of
«Dependent
Types at Work»

10(Bove & Dybjer, 2009), “Dependent Types at Work”-

‘Work Done

Example!!

Natural numbers in Agda
data Nat : Set where
zero : Nat
succ : Nat -> Nat

Equality between Natural numbers in Agda
==_ : Nat -> Nat -> Bool

zZero == zero = true
Zero == succ n = false
sSucc n == zero = false
succ n == succ m = n ==

1 (Bove & Dybjer, 2009), “Dependent Types at Work”:

‘Work Done

ATP

At the
o Now
begining
| |
SPASS E-Prover
|
0s?
Linux

Virtual Installation

Machine of E

‘Work Done

Example

Proof of the Modus Ponens Principle in E

fof(c_0_7, plain, (("alb)), inference(fof_nnf, [status(thm)],
[c_0_41)).

cnf(c_0_10,plain, (b|~a), inference(split_conjunct, [status(thm)],
[c_0_71)).

cnf (c_0_13,plain, (b|~a), c_0_10).

cnf (c_0_14,plain, (a), c_0_11).

cnf (c_0_16,plain, (b), inference(cn, [status(thm)], [inference(rw,
[status(thm)],[c_0_13, c_0_14, theory(equality)]),

theory(equality, [symmetry])])).

‘Work in Progress

Work in Progress

Currently, we are testing the behavior of the parser from TSTP
into Agda, developed by Gémez-Londono.'? Its performance is
being verified with basic E proofs.

2https://github. com/agomezl/tstpagda

https://github.com/agomezl/tstp2agda

Example

Parsing the Proof of the Modus Ponens Principle

F {name = "c_0_0", role = Axiom, formula = PredApp (AtomicWord "a") [J,
source = File "modusPonens.tptp" (Just "a")}

F {name = "c_0_3", role = Axiom, formula = PredApp (AtomicWord "a") [],
source = Name "c_0_0"

F {name = "c_0_5", role
source = Name "c_0_3"}

[|

Axiom, formula = PredApp (AtomicWord "a") [I,

Thanks for your attention!

	Introduction
	Work Done
	Work in Progress

